Regular and Chaotic Dynamics

, Volume 20, Issue 2, pp 189–204 | Cite as

From chaos to quasi-periodicity

  • Alexander P. KuznetsovEmail author
  • Natalia A. Migunova
  • Igor R. Sataev
  • Yuliya V. Sedova
  • Ludmila V. Turukina


Ensembles of several Rössler chaotic oscillators are considered. It is shown that a typical phenomenon for such systems is the emergence of different and sufficiently high dimensional invariant tori. The possibility of a quasi-periodic Hopf bifurcation and a cascade of such bifurcations based on tori of increasing dimension is demonstrated. The domains of resonance tori are revealed. Boundaries of these domains correspond to the saddle-node bifurcations. Inside the domains of resonance modes, torus-doubling bifurcations and destruction of tori are observed.


chaos quasi-periodic oscillation invariant torus Lyapunov exponent bifurcation 

MSC2010 numbers

70K43 65P20 65P30 34D08 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Heinrich, G., Ludwig, M., Qian, J., Kubala, B. and Marquardt, F., Collective Dynamics in Optomechanical Arrays, Phys. Rev. Lett., 2011, vol. 107, no. 4, 043603, 4 pp.CrossRefGoogle Scholar
  2. 2.
    Zhang, M., Wiederhecker, G. S., Manipatruni, S., Barnard, A., McEuen, P., and Lipson, M., Synchronization of Micromechanical Oscillators Using Light, Phys. Rev. Lett., 2012, vol. 109, no. 23, 233906, 5 pp.CrossRefGoogle Scholar
  3. 3.
    Temirbayev, A., Nalibayev, Ye.D., Zhanabaev, Z. Zh., Ponomarenko, V. I., and Rosenblum, M., Autonomous and Forced Dynamics of Oscillator Ensembles with Global Nonlinear Coupling: An Experimental Study, Phys. Rev. E, 2013, vol. 87, no. 6, 062917, 11 pp.CrossRefGoogle Scholar
  4. 4.
    Martens, E. A., Thutupalli, S., Fourrière, A., and Hallatschek, O., Chimera States in Mechanical Oscillator Networks, Proc. Natl. Acad. Sci., 2013, vol. 110, no. 26, pp. 10563–10567.CrossRefGoogle Scholar
  5. 5.
    Tinsley, M. R., Nkomo, S., and Showalter, K., Chimera and Phase-Cluster States in Populations of Coupled Chemical Oscillators, Nature Phys., 2012, vol. 8, no. 9, pp. 662–665.CrossRefGoogle Scholar
  6. 6.
    Vlasov, V. and Pikovsky, A., Synchronization of a Josephson Junction Array in Terms of Global Variables, Phys. Rev. E, 2013, vol. 88, no. 2, 022908, 5 pp.CrossRefGoogle Scholar
  7. 7.
    Lee, T. E. and Cross, M.C., Pattern Formation with Trapped Ions, Phys. Rev. Lett., 2011, vol. 106, no. 14, 143001, 4 pp.CrossRefGoogle Scholar
  8. 8.
    Lee, T.E. and Sadeghpour, H. R., Quantum Synchronization of Quantum van der Pol Oscillators with Trapped Ions, Phys. Rev. Lett., 2013, vol. 111, no. 23, 234101, 5 pp.CrossRefGoogle Scholar
  9. 9.
    Grebogi, C., Ott, E., and Yorke, J.A., Attractors on an N-torus: Quasiperiodicity Versus Chaos, Phys. D, 1985, vol. 15, no. 3, pp. 354–373.CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Linsay, P. S. and Cumming, A.W., Three-Frequency Quasiperiodicity, Phase Locking, and the Onset of Chaos, Phys. D, 1989, vol. 40, no. 2, pp. 196–217.CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Battelino, P.M., Grebogi, C., Ott, E. and Yorke, J.A., Chaotic Attractors on a 3-Torus, and Torus Break-Up, Phys. D, 1989, vol. 39, nos. 2–3, pp. 299–314.CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Baesens, C., Guckenheimer, J., Kim, S., and MacKay, R. S., Three Coupled Oscillators: Mode-Locking, Global Bifurcations and Toroidal Chaos, Phys. D, 1991, vol. 49, no. 3, pp. 387–475.CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Emelianova, Yu.P., Kuznetsov, A.P., Sataev, I.R., and Turukina, L. V., Synchronization and Multi-Frequency Oscillations in the Low-Dimensional Chain of the Self-Oscillators, Phys. D, 2013, vol. 244, no. 1, pp. 36–49.CrossRefzbMATHGoogle Scholar
  14. 14.
    Kuznetsov, A.P., Kuznetsov, S.P., Sataev, I.R., and Turukina, L. V., About Landau — Hopf Scenario in a System of Coupled Self-Oscillators, Phys. Lett. A, 2013, vol. 377, nos. 45–48, pp. 3291–3295.CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Emelianova, Yu.P., Kuznetsov, A.P., Turukina, L.V., Sataev, I.R., and Chernyshov, N.Yu., A Structure of the Oscillation Frequencies Parameter Space for the system of Dissipatively Coupled Oscillators, Commun. Nonlinear Sci. Numer. Simul., 2014, vol. 19, no. 4, pp. 1203–1212.CrossRefMathSciNetGoogle Scholar
  16. 16.
    Li, X.-W. and Zheng, Zh.-G., Phase Synchronization of Coupled Rössler Oscillators: Amplitude Effect, Commun. Theor. Phys., 2007, vol. 47, no. 2, pp. 265–269.CrossRefGoogle Scholar
  17. 17.
    Pazó, D., Sánchez, E. and Matías, M. A., Transition to High-Dimensional Chaos through Quasiperiodic Motion, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2001, vol. 11, no. 10, pp. 2683–2688.CrossRefGoogle Scholar
  18. 18.
    Pazó, D. and Matías, M.A., Direct Transition to High-Dimensional Chaos through a Global Bifurcation, Europhys. Lett., 2005, vol. 72, no. 2, pp. 176–182CrossRefMathSciNetGoogle Scholar
  19. 19.
    Rosenblum, M. G., Pikovsky, A. S., and Kurths, J., Phase Synchronization of Chaotic Oscillators, Phys. Rev. Lett., 1996, vol. 76, no. 11, pp. 1804–1807.CrossRefGoogle Scholar
  20. 20.
    Osipov, G.V., Pikovsky, A. S., Rosenblum, M. G., and Kurths, J., Phase Synchronization Effects in a Lattice of Nonidentical Rössler Oscillators, Phys. Rev. E, 1997, vol. 55, no. 3, pp. 2353–2361.CrossRefMathSciNetGoogle Scholar
  21. 21.
    Pikovsky, A., Rosenblum, M., and Kurths, J., Synchronization: A Universal Concept in Nonlinear Sciences, New York: Cambridge Univ. Press, 2001.CrossRefGoogle Scholar
  22. 22.
    Vitolo, R., Broer, H., and Simó, C., Routes to Chaos in the Hopf-Saddle-Node Bifurcation for Fixed Points of 3D-Diffeomorphisms, Nonlinearity, 2010, vol. 23, no. 8, pp. 1919–1947.CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Broer, H., Simó, C., and Vitolo, R., Hopf-Saddle-Node Bifurcation for Fixed Points of 3D-Diffeomorphisms: Analysis of a Resonance “bubble”, Phys. D, 2008, vol. 237, no. 13, pp. 1773–1799.CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Broer, H., Simó, C., and Vitolo, R., The Hopf-Saddle-Node Bifurcation for Fixed Points of 3D-Diffeomorphisms: The Arnol’d Resonance Web, Bull. Belg. Math. Soc. Simon Stevin, 2008, vol. 15, no. 5, pp. 769–787.zbMATHMathSciNetGoogle Scholar
  25. 25.
    Vitolo, R., Broer, H., and Simó, C., Quasi-Periodic Bifurcations of Invariant Circles in Low-Dimensional Dissipative Dynamical Systems, Regul. Chaotic Dyn., 2011, vol. 16, nos. 1–2, pp. 154–184.CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Landau, L. D., On the Problem of Turbulence, Dokl. Akad. Nauk SSSR, 1944, vol. 44, no. 8, pp. 339–342 (Russian).Google Scholar
  27. 27.
    Hopf, E., A Mathematical Example Displaying the Features of Turbulence, Comm. Pure Appl. Math., 1948, vol. 1, pp. 303–322.CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Kuznetsov, S.P., Hyperbolic Chaos: A Physicist’s View, Berlin: Springer, 2012.CrossRefGoogle Scholar
  29. 29.
    Khibnik, A. I., Braiman, Y., Protopopescu, V., Kennedy, T.A.B., and Wiesenfeld, K., Amplitude Dropout in Coupled Lasers, Phys. Rev. A., 2000, vol. 62, no. 6, 063815, 5 pp.CrossRefGoogle Scholar
  30. 30.
    Khibnik, A. I., Braiman, Y., Kennedy, T.A. B., and Wiesenfeld, K., Phase Model Analysis of Two Lasers with Injected Field, Phys. D, 1998, vol. 111, nos. 1–4, pp. 295–310.CrossRefzbMATHGoogle Scholar
  31. 31.
    Kazakov, A. O., Strange Attractors and Mixed Dynamics in the Problem of an Unbalanced Rubber Ball Rolling on a Plane, Regul. Chaotic Dyn., 2013, vol. 18, no. 5, pp. 508–520.CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    Gonchenko, A. S., Gonchenko, S.V., and Kazakov, A.O., Richness of Chaotic Dynamics in Nonholonomic Models of a Celtic Stone, Regul. Chaotic Dyn., 2013, vol. 18, no. 5, pp. 521–538.CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    Borisov, A.V., Kazakov, A.O., and Sataev, I.R., The Reversal and Chaotic Attractor in the Nonholonomic Model of Chaplygin’s Top, Regul. Chaotic Dyn., 2014, vol. 19, no. 6, pp. 718–733.CrossRefMathSciNetGoogle Scholar
  34. 34.
    Borisov, A.V., Jalnine, A.Yu., Kuznetsov, S.P., Sataev, I.R., and Sedova, J.V., Dynamical Phenomena Occurring due to Phase Volume Compression in Nonholonomic Model of the Rattleback, Regul. Chaotic Dyn., 2012, vol. 17, no. 6, pp. 512–532.CrossRefzbMATHMathSciNetGoogle Scholar
  35. 35.
    Afraimovich, V. S., Gonchenko, S.V., Lerman, L.M., Shilnikov, A. L., and Turaev, D. V., Scientific Heritage of L.P. Shilnikov, Regul. Chaotic Dyn., 2014, vol. 19, no. 4, pp. 435–460.CrossRefzbMATHMathSciNetGoogle Scholar
  36. 36.
    Jalnine, A.Yu., Generalized Synchronization of Identical Chaotic Systems on the Route from an Independent Dynamics to the Complete Synchrony, Regul. Chaotic Dyn., 2013, vol. 18, no. 3, pp. 214–225.CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • Alexander P. Kuznetsov
    • 1
    • 2
    Email author
  • Natalia A. Migunova
    • 2
  • Igor R. Sataev
    • 1
  • Yuliya V. Sedova
    • 1
  • Ludmila V. Turukina
    • 1
    • 2
  1. 1.Saratov BranchKotel’nikov Institute of Radio Engineering and Electronics of RASSaratovRussia
  2. 2.Saratov State UniversitySaratovRussia

Personalised recommendations