Abstract
We study the splitting of a separatrix in a generic unfolding of a degenerate equilibrium in a Hamiltonian system with two degrees of freedom. We assume that the unperturbed fixed point has two purely imaginary eigenvalues and a non-semisimple double zero one. It is well known that a one-parameter unfolding of the corresponding Hamiltonian can be described by an integrable normal form. The normal form has a normally elliptic invariant manifold of dimension two. On this manifold, the truncated normal form has a separatrix loop. This loop shrinks to a point when the unfolding parameter vanishes. Unlike the normal form, in the original system the stable and unstable separatrices of the equilibrium do not coincide in general. The splitting of this loop is exponentially small compared to the small parameter. This phenomenon implies nonexistence of single-round homoclinic orbits and divergence of series in normal form theory. We derive an asymptotic expression for the separatrix splitting. We also discuss relations with the behavior of analytic continuation of the system in a complex neighborhood of the equilibrium.
This is a preview of subscription content, access via your institution.
References
Alfimov, G. L., Eleonsky, V.M., and Kulagin, N.E., Dynamical Systems in the Theory of Solitons in the Presence of Nonlocal Interactions, Chaos, 1992, vol. 2, no. 4, pp. 565–570.
Baldomá, I. and Seara, T.M., Breakdown of Heteroclinic Orbits for Some Analytic Unfoldings of the Hopf-Zero Singularity, J. Nonlinear Sci., 2006, vol. 16, no. 6, pp. 543–582.
Baldomá, I., Fontich, E., Guàrdia, M., and Seara, T. M., Exponentially Small Splitting of Separatrices beyond Melnikov Analysis: Rigorous Results, J. Differential Equations, 2012, vol. 253, no. 12, pp. 3304–3439.
Baldomá, I., Castejón, O., and Seara, T.M., Exponentially Small Heteroclinic Breakdown in the Generic Hopf-Zero Singularity, J. Dynam. Differential Equations, 2013, vol. 25, no. 2, pp. 335–392.
Broer, H. W., Chow, S.-N., Kim, Y., and Vegter, G., A Normally Elliptic Hamiltonian Bifurcation, Z. Angew. Math. Phys., 1993, vol. 44, no. 3, pp. 389–432.
Champneys, A.R., Homoclinic Orbits in Reversible Systems and Their Applications in Mechanics, Fluids and Optics, Phys. D, 1998, vol. 112, nos. 1–2, pp. 158–86
Champneys, A.R., Codimension-One Persistence beyond All Orders of Homoclinic Orbits to Singular Saddle Centres in Reversible Systems, Nonlinearity, 2001, vol. 14, no. 1, pp. 87–112.
Gelfreich, V. G., Separatrix Splitting for a High-Frequency Perturbation of the Pendulum, Russ. J. Math. Phys., 2000, vol. 7, no. 1, pp. 48–71.
Gelfreich, V. G., Splitting of a Small Separatrix Loop near the Saddle-Center Bifurcation in Area-Preserving Maps, Phys. D, 2000, vol. 136, nos. 3–4, pp. 266–279.
Gelfreich, V. and Lazutkin, V., Splitting of Separatrices: Perturbation Theory and Exponential Smallness, Russian Math. Surveys, 2001, vol. 56, no. 3, pp. 499–558; see also: Uspekhi Mat. Nauk, 2001, vol. 56, no. 3(339), pp. 79–142.
Gelfreich, V., Near Strongly Resonant Periodic Orbits in a Hamiltonian System, Proc. Natl. Acad. Sci. USA, 2002, vol. 99, no. 22, pp. 13975–13979.
Gelfreich, V. G. and Lerman, L. M., Almost Invariant Elliptic Manifold in a Singularly Perturbed Hamiltonian System, Nonlinearity, 2002, vol. 15, no. 2, pp. 447–457.
Gelfreich, V.G. and Lerman, L.M., Long-Periodic Orbits and Invariant Tori in a Singularly Perturbed Hamiltonian System, Phys. D, 2003, vol. 176, nos. 3–4, pp. 125–146.
Gelfreich, V. and Simó, C., High-Precision Computations of Divergent Asymptotic Series and Homoclinic Phenomena, Discrete Contin. Dyn. Syst. Ser. B, 2008, vol. 10, nos. 2–3, pp. 511–536.
Giorgilli, A., Unstable Equilibria of Hamiltonian Systems, Discrete Contin. Dynam. Systems, 2001, vol. 7, no. 4, pp. 855–871.
Grotta Ragazzo, C., Irregular Dynamics and Homoclinic Orbits to Hamiltonian Saddle Centers, Comm. Pure Appl. Math., 1997, vol. 50, no. 2, pp. 105–147.
Haragus, M. and Iooss, G., Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical Systems, London: Springer, 2011.
Iooss, G. and Adelmeyer, M., Topics in Bifurcation Theory and Applications, Adv. Ser. Nonlinear Dynam., vol. 3, River Edge, N.J.: World Sci., 1992.
Iooss, G. and Lombardi, E., Polynomial Normal Forms with Exponentially Small Remainder for Analytic Vector Fields, J. Differential Equations, 2005, vol. 212, no. 1, pp. 1–61.
Iooss, G. and Lombardi, E., Normal Forms with Exponentially Small Remainder: Application to Homoclinic Connections for the Reversible 02+iω Resonance, C. R. Math. Acad. Sci. Paris, Ser. 1, 2004, vol. 339, no. 12, pp. 831–838.
Jézéquel, T., Bernard, P., and Lombardi, E., Homoclinic Connections with Many Loops near a 02 iω Resonant Fixed Point for Hamiltonian Systems, arXiv:1401.1509 (2014), 79 pp.
Koltsova, O., Families ofMulti-Round Homoclinic and Periodic Orbits near a Saddle-Center Equilibrium, Regul. Chaotic Dyn., 2003, vol. 8, no. 3, pp. 191–200.
Koltsova, O. and Lerman, L.M., Periodic and Homoclinic Orbits in a Two-Parameter Unfolding of a Hamiltonian System with a Homoclinic Orbit to a Saddle-Center, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 1995, vol. 5, no. 2, pp. 397–408.
Koltsova, O.Yu. and Lerman, L. M., Families of Transverse Poincaré Homoclinic Orbits in 2NDimensional Hamiltonian Systems Close to the System with a Loop to a Saddle-Center, Int. J. Bifurcation & Chaos, 1996, vol. 6, no. 6, pp. 991–1006.
Lerman, L.M. and Gelfreich, V.G., Fast-Slow Hamiltonian Dynamics near a Ghost Separatrix Loop, J. Math. Sci. (N. Y.), 2005, vol. 126, no. 5, pp. 1445–1466; see also: Sovrem. Mat. Prilozh., 2003, no. 8, pp. 85–107.
Lerman, L.M., Hamiltonian Systems with a Separatrix Loop of a Saddle-Center, Selecta Math. (N. S.), 1991, vol. 10, pp. 297–306; see also: Methods of the Qualitative Theory of Differential Equations, E.A. Leontovich–Andronova (Ed.), Gorki: GGU, 1987, pp. 89–103.
Llibre, J., Martínez, R., and Simó, C., Transversality of the Invariant Manifolds Associated to the Lyapunov Family of Periodic Orbits near L2 in the Restricted Three-body Problem, J. Differential Equations, 1985, vol. 58, no. 1, pp. 104–156.
Lombardi, E., Oscillatory Integrals and Phenomena beyond All Algebraic Orders: With Applications to Homoclinic Orbits in Reversible Systems, Lecture Notes in Math., vol. 1741, Berlin: Springer, 2000.
Mielke, A., Holmes, P., and O’Reiley, O., Cascades of Homoclinic Orbits to, and Chaos near, a Hamiltonian Saddle-Center, J. Dynam. Differential Equations, 1992, vol. 4, no. 1, pp. 95–126.
Moser, J., On the Generalization of a Theorem of A. Liapounoff, Comm. Pure Appl. Math., 1958, vol. 11, pp. 257–271.
Treschev, D., Splitting of Separatrices for a Pendulum with Rapidly Oscillating Suspension Point, Russian J. Math. Phys., 1997, vol. 5, no. 1, pp. 63–98.
Author information
Authors and Affiliations
Corresponding author
Additional information
Dedicated to our colleagues Prof. Sergey Bolotin and Prof. Dmitry Treschev on the occasion of their anniversaries
Rights and permissions
About this article
Cite this article
Gelfreich, V., Lerman, L. Separatrix splitting at a Hamiltonian 02 iω bifurcation. Regul. Chaot. Dyn. 19, 635–655 (2014). https://doi.org/10.1134/S1560354714060033
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1560354714060033
MSC2010 numbers
- 37J20
- 37J45
- 70K50
- 70K70
Keywords
- Hamiltonian bifurcation
- homoclinic orbit
- separatrix splitting
- asymptotics beyond all orders