Alfimov, G. L., Eleonsky, V.M., and Kulagin, N.E., Dynamical Systems in the Theory of Solitons in the Presence of Nonlocal Interactions, Chaos, 1992, vol. 2, no. 4, pp. 565–570.
Article
MATH
MathSciNet
Google Scholar
Baldomá, I. and Seara, T.M., Breakdown of Heteroclinic Orbits for Some Analytic Unfoldings of the Hopf-Zero Singularity, J. Nonlinear Sci., 2006, vol. 16, no. 6, pp. 543–582.
Article
MATH
MathSciNet
Google Scholar
Baldomá, I., Fontich, E., Guàrdia, M., and Seara, T. M., Exponentially Small Splitting of Separatrices beyond Melnikov Analysis: Rigorous Results, J. Differential Equations, 2012, vol. 253, no. 12, pp. 3304–3439.
Article
MATH
MathSciNet
Google Scholar
Baldomá, I., Castejón, O., and Seara, T.M., Exponentially Small Heteroclinic Breakdown in the Generic Hopf-Zero Singularity, J. Dynam. Differential Equations, 2013, vol. 25, no. 2, pp. 335–392.
Article
MATH
MathSciNet
Google Scholar
Broer, H. W., Chow, S.-N., Kim, Y., and Vegter, G., A Normally Elliptic Hamiltonian Bifurcation, Z. Angew. Math. Phys., 1993, vol. 44, no. 3, pp. 389–432.
Article
MATH
MathSciNet
Google Scholar
Champneys, A.R., Homoclinic Orbits in Reversible Systems and Their Applications in Mechanics, Fluids and Optics, Phys. D, 1998, vol. 112, nos. 1–2, pp. 158–86
Article
MATH
MathSciNet
Google Scholar
Champneys, A.R., Codimension-One Persistence beyond All Orders of Homoclinic Orbits to Singular Saddle Centres in Reversible Systems, Nonlinearity, 2001, vol. 14, no. 1, pp. 87–112.
Article
MATH
MathSciNet
Google Scholar
Gelfreich, V. G., Separatrix Splitting for a High-Frequency Perturbation of the Pendulum, Russ. J. Math. Phys., 2000, vol. 7, no. 1, pp. 48–71.
MATH
MathSciNet
Google Scholar
Gelfreich, V. G., Splitting of a Small Separatrix Loop near the Saddle-Center Bifurcation in Area-Preserving Maps, Phys. D, 2000, vol. 136, nos. 3–4, pp. 266–279.
Article
MATH
MathSciNet
Google Scholar
Gelfreich, V. and Lazutkin, V., Splitting of Separatrices: Perturbation Theory and Exponential Smallness, Russian Math. Surveys, 2001, vol. 56, no. 3, pp. 499–558; see also: Uspekhi Mat. Nauk, 2001, vol. 56, no. 3(339), pp. 79–142.
Article
MathSciNet
Google Scholar
Gelfreich, V., Near Strongly Resonant Periodic Orbits in a Hamiltonian System, Proc. Natl. Acad. Sci. USA, 2002, vol. 99, no. 22, pp. 13975–13979.
Article
MATH
MathSciNet
Google Scholar
Gelfreich, V. G. and Lerman, L. M., Almost Invariant Elliptic Manifold in a Singularly Perturbed Hamiltonian System, Nonlinearity, 2002, vol. 15, no. 2, pp. 447–457.
Article
MATH
MathSciNet
Google Scholar
Gelfreich, V.G. and Lerman, L.M., Long-Periodic Orbits and Invariant Tori in a Singularly Perturbed Hamiltonian System, Phys. D, 2003, vol. 176, nos. 3–4, pp. 125–146.
Article
MATH
MathSciNet
Google Scholar
Gelfreich, V. and Simó, C., High-Precision Computations of Divergent Asymptotic Series and Homoclinic Phenomena, Discrete Contin. Dyn. Syst. Ser. B, 2008, vol. 10, nos. 2–3, pp. 511–536.
MATH
MathSciNet
Google Scholar
Giorgilli, A., Unstable Equilibria of Hamiltonian Systems, Discrete Contin. Dynam. Systems, 2001, vol. 7, no. 4, pp. 855–871.
Article
MATH
MathSciNet
Google Scholar
Grotta Ragazzo, C., Irregular Dynamics and Homoclinic Orbits to Hamiltonian Saddle Centers, Comm. Pure Appl. Math., 1997, vol. 50, no. 2, pp. 105–147.
Article
MATH
MathSciNet
Google Scholar
Haragus, M. and Iooss, G., Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical Systems, London: Springer, 2011.
Book
MATH
Google Scholar
Iooss, G. and Adelmeyer, M., Topics in Bifurcation Theory and Applications, Adv. Ser. Nonlinear Dynam., vol. 3, River Edge, N.J.: World Sci., 1992.
MATH
Google Scholar
Iooss, G. and Lombardi, E., Polynomial Normal Forms with Exponentially Small Remainder for Analytic Vector Fields, J. Differential Equations, 2005, vol. 212, no. 1, pp. 1–61.
Article
MATH
MathSciNet
Google Scholar
Iooss, G. and Lombardi, E., Normal Forms with Exponentially Small Remainder: Application to Homoclinic Connections for the Reversible 02+iω Resonance, C. R. Math. Acad. Sci. Paris, Ser. 1, 2004, vol. 339, no. 12, pp. 831–838.
Article
MATH
MathSciNet
Google Scholar
Jézéquel, T., Bernard, P., and Lombardi, E., Homoclinic Connections with Many Loops near a 02
iω Resonant Fixed Point for Hamiltonian Systems, arXiv:1401.1509 (2014), 79 pp.
Google Scholar
Koltsova, O., Families ofMulti-Round Homoclinic and Periodic Orbits near a Saddle-Center Equilibrium, Regul. Chaotic Dyn., 2003, vol. 8, no. 3, pp. 191–200.
Article
MATH
MathSciNet
Google Scholar
Koltsova, O. and Lerman, L.M., Periodic and Homoclinic Orbits in a Two-Parameter Unfolding of a Hamiltonian System with a Homoclinic Orbit to a Saddle-Center, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 1995, vol. 5, no. 2, pp. 397–408.
Article
MATH
MathSciNet
Google Scholar
Koltsova, O.Yu. and Lerman, L. M., Families of Transverse Poincaré Homoclinic Orbits in 2NDimensional Hamiltonian Systems Close to the System with a Loop to a Saddle-Center, Int. J. Bifurcation & Chaos, 1996, vol. 6, no. 6, pp. 991–1006.
Article
MATH
MathSciNet
Google Scholar
Lerman, L.M. and Gelfreich, V.G., Fast-Slow Hamiltonian Dynamics near a Ghost Separatrix Loop, J. Math. Sci. (N. Y.), 2005, vol. 126, no. 5, pp. 1445–1466; see also: Sovrem. Mat. Prilozh., 2003, no. 8, pp. 85–107.
Article
MATH
MathSciNet
Google Scholar
Lerman, L.M., Hamiltonian Systems with a Separatrix Loop of a Saddle-Center, Selecta Math. (N. S.), 1991, vol. 10, pp. 297–306; see also: Methods of the Qualitative Theory of Differential Equations, E.A. Leontovich–Andronova (Ed.), Gorki: GGU, 1987, pp. 89–103.
MathSciNet
Google Scholar
Llibre, J., Martínez, R., and Simó, C., Transversality of the Invariant Manifolds Associated to the Lyapunov Family of Periodic Orbits near L2 in the Restricted Three-body Problem, J. Differential Equations, 1985, vol. 58, no. 1, pp. 104–156.
Article
MATH
MathSciNet
Google Scholar
Lombardi, E., Oscillatory Integrals and Phenomena beyond All Algebraic Orders: With Applications to Homoclinic Orbits in Reversible Systems, Lecture Notes in Math., vol. 1741, Berlin: Springer, 2000.
Book
Google Scholar
Mielke, A., Holmes, P., and O’Reiley, O., Cascades of Homoclinic Orbits to, and Chaos near, a Hamiltonian Saddle-Center, J. Dynam. Differential Equations, 1992, vol. 4, no. 1, pp. 95–126.
Article
MATH
MathSciNet
Google Scholar
Moser, J., On the Generalization of a Theorem of A. Liapounoff, Comm. Pure Appl. Math., 1958, vol. 11, pp. 257–271.
Article
MATH
MathSciNet
Google Scholar
Treschev, D., Splitting of Separatrices for a Pendulum with Rapidly Oscillating Suspension Point, Russian J. Math. Phys., 1997, vol. 5, no. 1, pp. 63–98.
MATH
MathSciNet
Google Scholar