Skip to main content
Log in

On the Lie integrability theorem for the Chaplygin ball

  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

The necessary number of commuting vector fields for the Chaplygin ball in the absolute space is constructed. We propose to get these vector fields in the framework of the Poisson geometry similar to Hamiltonian mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnol’d, V. I., Kozlov, V.V., and Neĭshtadt, A. I., Mathematical Aspects of Classical and Celestial Mechanics, 3rd ed., Encyclopaedia Math. Sci., vol. 3, Berlin: Springer, 2006.

    Google Scholar 

  2. Bianchi, L., Lezione sulla teoria dei gruppi continui finiti di transformazioni, Pisa: Enrico Spoerri, 1918.

    Google Scholar 

  3. Bizyaev, I. A. and Tsiganov, A.V., On the Routh Sphere Problem, J. Phys. A, 2013, vol. 46, no. 8, 085202, 11 pp.

    Article  MathSciNet  Google Scholar 

  4. Borisov, A. V., Kilin, A.A., and Mamaev, I. S., The Problem of Drift and Recurrence for the Rolling Chaplygin Ball, Regul. Chaotic Dyn., 2013, vol. 18, no. 6, pp. 832–859.

    Article  MathSciNet  Google Scholar 

  5. Borisov, A. V. and Mamaev, I. S., The Chaplygin Problem of the Rolling Motion of a Ball is Hamiltonian, Math. Notes, 2001, vol. 70, no. 5, pp. 720–723; see also: Mat. Zametki, 2001, vol. 70, no. 5, pp. 793–795 (Russian).

    Article  MATH  MathSciNet  Google Scholar 

  6. Chaplygin, S. A., On a Ball’s Rolling on a Horizontal Plane, Regul. Chaotic Dyn., 2002, vol. 7, no. 2, pp. 131–148; see also: Math. Sb., 1903, vol. 24, no. 1, pp. 139—168 (Russian).

    Article  MATH  MathSciNet  Google Scholar 

  7. Crampin, M. and Mestdag, T., Routh’s Procedure for Non-Abelian Symmetry Groups, J. Math. Phys., 2008, vol. 49, no. 3, 032901, 28 pp.

    Google Scholar 

  8. Kilin, A.A., The Dynamics of Chaplygin Ball: The Qualitative and Computer Analysis, Regul. Chaotic Dyn., 2001, vol. 6, no. 3, pp. 291–306.

    Article  MATH  MathSciNet  Google Scholar 

  9. Kozlov, V.V., On the Integration Theory of Equations of Nonholonomic Mechanics, Regul. Chaotic Dyn., 2002, vol. 7, no. 2, pp. 161–176; see also: Adv. in Mech., 1985, vol. 8, no. 3, pp. 85–107 (Russian).

    Article  MATH  MathSciNet  Google Scholar 

  10. Kozlov, V.V., The Euler — Jacobi — Lie Integrability Theorem, Regul. Chaotic Dyn., 2013, vol. 18, no. 4, pp. 329–343.

    Article  MATH  MathSciNet  Google Scholar 

  11. Laurent-Gengoux, C., Miranda, E., and Vanhaecke, P., Action-Angle Coordinates for Integrable Systems on Poisson Manifolds, Int. Math. Res. Not., 2011, no. 8, pp. 1839–1869.

    Google Scholar 

  12. Lie, S., Vorlesungen über Differentialgleichungen mit bekannten infinitesimalen Transformationen, Leipzig: Teubner, 1912.

    MATH  Google Scholar 

  13. Marsden, J. E., Ratiu, T. S., Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems, 2nd ed., Texts Appl. Math., vol. 17, New York: Springer, 1999.

    Book  MATH  Google Scholar 

  14. Nekhoroshev, N. N., Types of Integrability on a Submanifold and Generalizations of Gordon’s Theorem, Trans. Moscow Math. Soc., 2005, vol. 66, pp. 169–241; see also: Tr. Mosk. Mat. Obs., 2005, vol. 66, pp. 184–262 (Russian).

    Article  MathSciNet  Google Scholar 

  15. Olver, P. J., Applications of Lie Groups to Differential Equations, 2nd ed., Grad. Texts in Math., vol. 107, New York: Springer, 1993.

    Book  MATH  Google Scholar 

  16. Routh, E. J., Advanced Rigid Bodies Dynamics, London: MacMillan, 1884; see also: Advanced Dynamics of a System of Rigid Bodies, New York: Dover, 1960 (reprint).

    Google Scholar 

  17. Tsiganov, A.V., Integrable Euler Top and Nonholonomic Chaplygin Ball, J. Geom. Mech., 2011, vol. 3, no. 3, pp. 337–362.

    Article  MATH  MathSciNet  Google Scholar 

  18. Tsiganov, A.V., One Family of Conformally Hamiltonian Systems, Theoret. and Math. Phys., 2012, vol. 173, no. 2, pp. 1481–1497; see also: Teoret. Mat. Fiz., 2012, vol. 173, no. 2, pp. 179–196 (Russian).

    Article  MATH  MathSciNet  Google Scholar 

  19. Tsiganov, A.V., On the Poisson Structures for the Nonholonomic Chaplygin and Veselova Problems, Regul. Chaotic Dyn., 2012, vol. 17, no. 5, pp. 439–450.

    Article  MATH  MathSciNet  Google Scholar 

  20. Tsiganov, A.V., On Generalized Nonholonomic Chaplygin Sphere Problem, Int. J. Geom. Methods Mod. Phys., 2013, vol. 10, no. 6, 1320008, 8 pp.

    Article  MathSciNet  Google Scholar 

  21. Tsiganov, A.V., On the Nonholonomic Stübler Model, Nonlin. Dyn. Mob. Robot., 2013, vol. 1, pp. 87–97.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey V. Tsiganov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsiganov, A.V. On the Lie integrability theorem for the Chaplygin ball. Regul. Chaot. Dyn. 19, 185–197 (2014). https://doi.org/10.1134/S1560354714020038

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354714020038

MSC2010 numbers

Keywords

Navigation