Regular and Chaotic Dynamics

, Volume 19, Issue 1, pp 81–99 | Cite as

Spin reversal of a rattleback with viscous friction

  • Hiroshi Takano


An effective equation of motion of a rattleback is obtained from the basic equation of motion with viscous friction depending on slip velocity. This effective equation of motion is used to estimate the number of spin reversals and the rattleback’s shape that causes the maximum number of spin reversals. These estimates are compared with numerical simulations based on the basic equation of motion.


rattleback viscous friction 

MSC2010 numbers

70E18 70F40 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Walker, G.T., On a Dynamical Top, Q. J. Pure Appl. Math., 1896, vol. 28, pp. 175–185.zbMATHGoogle Scholar
  2. 2.
    Pascal, M., Asymptotic Solution of the Equations of Motion for a Celtic Stone, Prikl. Mat. Mekh., 1983, vol. 47, no. 2, pp. 321–329 [J. Appl. Math. Mech., 1983, vol. 47, no. 2, pp. 269–276].Google Scholar
  3. 3.
    Markeev, A.P., The Dynamics of a Rigid Body on an Absolutely Rough Plane, Prikl. Mat. Mekh., 1983, vol. 47, no. 4, pp. 575–582 [J. Appl. Math. Mech., 1983, vol. 47, no. 4, pp. 473–478].MathSciNetGoogle Scholar
  4. 4.
    Blackowiak, A.D., Rand, R. H., and Kaplan, H., The Dynamics of the Celt with Second Order Averaging and Computer Algebra, in Proc. of the ASME DETC’97/VIB-4103, 1997.Google Scholar
  5. 5.
    Moffatt, H. K. and Tokieda, T., Celt Reversals: A Prototype of Chiral Dynamics, Proc. Roy. Soc. Edinburgh Sect. A, 2008, vol. 138, no. 2, pp. 361–368.CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Bondi, H., The Rigid Body Dynamics of Unidirectional Spin, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 1986, vol. 405, pp. 265–274.CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Borisov, A.V. and Mamaev, I. S., Strange Attractors in Rattleback Dynamics, Uspekhi Fiz. Nauk, 2003, vol. 173, no. 4, pp. 408–418 [Physics-Uspekhi, 2003, vol. 46, no. 4, pp. 393–403].MathSciNetGoogle Scholar
  8. 8.
    Borisov, A. V., Kilin, A.A., and Mamaev, I. S., New Effects in Dynamics of Rattlebacks, Dokl. Phys., 2006, vol. 51, no. 5, pp. 272–275.CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Borisov, A.V., Jalnine, A.Yu., Kuznetsov, S.P., Sataev, I.R., and Sedova, J.V., Dynamical Phenomena Occurring due to Phase Volume Compression in Nonholonomic Model of the Rattleback, Regul. Chaotic Dyn., 2012, vol. 17, no. 6, pp. 512–532.CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Kane, T.R. and Levinson, D.A., Realistic Mathematical Modeling of the Rattleback, Int. J. Nonlinear Mech., 1982, vol. 17, no. 3, pp. 175–168.CrossRefzbMATHGoogle Scholar
  11. 11.
    Lindberg, R.E. Jr. and Longman, R. W., On the Dynamic Behavior of the Wobblestone, Acta Mech., 1983, vol. 49, nos. 1–2, pp. 81–94.CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Garcia, A. and Hubbard, M., Spin Reversal of the Rattleback: Theory and Experiment, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 1988, vol. 418, no. 1854, pp. 165–197.CrossRefMathSciNetGoogle Scholar
  13. 13.
    Karapetyan, A.V., On Realizing Nonholonomic Constraints by Viscous Friction Forces and Celtic Stones Stability, Prikl. Mat. Mekh., 1981, vol. 45, no. 1, pp. 42–51 [J. Appl. Math. Mech., 1981, vol. 45, no. 1, pp. 30–36].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Joetsu university of educationJoetsu, NiigataJapan

Personalised recommendations