Skip to main content
Log in

Periodic magnetic geodesics on almost every energy level via variational methods

Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

For strong exact magnetic fields the action functional (i.e., the length plus the linear magnetic term) is not bounded from below on the space of closed contractible curves and the lower estimates for critical levels are derived by using the principle of throwing out cycles. It is proved that for almost every energy level the principle of throwing out cycles gives periodic magnetic geodesics on the critical levels defined by the “thrown out” cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Arnold, V.I., First Steps in Symplectic Topology, Uspekhi Mat. Nauk, 1986, vol. 41, no. 6, pp. 3–18 [Russ. Math. Surv., 1986, vol. 41, no. 6, pp. 1–21].

    MathSciNet  Google Scholar 

  2. Bahri, A., Critical Points at Infinity in Some Variational Problems, Pitman Research Notes Math., vol. 182, Harlow: Longman House, 1989.

    MATH  Google Scholar 

  3. Bahri, A., and Taimanov, I.A., Periodic Orbits in Magnetic Fields and Ricci Curvature of Lagrangian Systems, Trans. Amer. Math. Soc., vol. 350, 1998, pp. 2697–2717.

    Article  MATH  MathSciNet  Google Scholar 

  4. Contreras, G., Macarini, L., and Paternain, G., Periodic orbits for exact magnetic flows on surfaces, Int. Math. Res. Not., 2004, no. 8, pp. 361–387.

  5. Contreras, G., The Palais-Smale Condition on Contact Type Energy Levels for Convex Lagrangian Systems, Calc. Var. Partial Differential Equations, 2006, vol. 27, pp. 321–395.

    Article  MATH  MathSciNet  Google Scholar 

  6. Frauenfelder, U. and Schlenk, F., Hamiltonian Dynamics on Convex Symplectic Manifolds, Israel J. Math., 2007, vol. 159, pp. 1–56.

    Article  MATH  MathSciNet  Google Scholar 

  7. Ginzburg, V.L., On the Existence and Non-existence of Closed Trajectories for Some Hamiltonian Flows, Math. Z., 1996, vol. 223, pp. 397–409.

    MATH  MathSciNet  Google Scholar 

  8. Ginzburg V., and Gürel, B., Periodic Orbits of Twisted Geodesic Flows and the Weinstein-Moser Theorem, Comment. Math. Helv., 2009, vol. l84, pp. 865–907.

    Article  Google Scholar 

  9. Grinevich, P.G., and Novikov, S.P., Nonselfintersecting Magnetic Orbits on the Plane. Proof of the Overthrowing of Cycles Principle, Topics in Topology and Mathematical Physics, Amer. Math. Soc. Transl. Ser. 2, vol. 170, Providence, RI: Amer. Math. Soc., 1995, pp. 59–82.

    Google Scholar 

  10. Klingenberg, W.: Lectures on Closed Geodesics, Grundlehren der Mathematischen Wissenschaften, vol. 230, Berlin-New York: Springer, 1978.

    MATH  Google Scholar 

  11. Koh, D., On the Evolution Equation for Magnetic Geodesics, Calc. Var. Partial Differential Equations, 2009, vol. 36, pp. 453–480.

    Article  MATH  MathSciNet  Google Scholar 

  12. Kozlov, V.V., Calculus of Variations in the Large and Classical Mechanics, Russian Math. Surveys, 1985, vol. 40, no. 2, pp. 37–71.

    Article  MATH  Google Scholar 

  13. Morse, M., The Calculus of Variations in the Large, Providence, RI: Amer. Math. Soc., 1934.

    MATH  Google Scholar 

  14. Novikov, S.P., Multivalued Functions and Functionals. An Analogue of the Morse Theory, Soviet Math. Dokl., 1981, vol. 24, pp. 222–226.

    MATH  Google Scholar 

  15. Novikov, S.P., The Hamiltonian Formalism and a Multivalued Analogue of Morse Theory, Russian Math. Surveys, 1982, vol. 37, no. 5, pp. 1–56.

    Article  MATH  Google Scholar 

  16. Novikov, S.P. and Taimanov, I.A., Periodic Extremals of Multivalued or not Everywhere Positive Functionals, Soviet Math. Dokl., 1984, vol. 29, pp. 18–20.

    MATH  Google Scholar 

  17. Palais, R.S. and Smale, S., A Generalized Morse Theory, Bull. Amer. Math. Soc., 1964, vol. 70, pp. 165–172.

    Article  MATH  MathSciNet  Google Scholar 

  18. Rabinowitz, P.H., Variational Methods for Nonlinear Eigenvalue Problems. In: Eigenvalues of nonlinear problems, Ed.: Prodi, G., C.I.M.E., Roma: Edizioni Cremonese, 1975, pp. 141–195.

    Google Scholar 

  19. Schneider, M., Closed Magnetic Geodesics on S 2, 2008, arXiv:0808.4038v3.

  20. Struwe, M., Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems. Fourth edition. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, vol. 34, Berlin: Springer, 2008.

    MATH  Google Scholar 

  21. Taimanov, I.A., The Principle of Throwing out Cycles in Morse-Novikov Theory, Soviet Math. Dokl., 1983, vol. 27, pp. 43–46.

    Google Scholar 

  22. Taimanov, I.A., Non-self-intersecting Closed Extremals of Multivalued or Not-everywhere-positive Functionals, Math. USSR-Izv., 1992, vol. 38, pp. 359–374.

    Article  MathSciNet  Google Scholar 

  23. Taimanov, I.A.: Closed Non-self-intersecting Extremals of Multivalued Functionals. Siberian Math. J., 1992, vol. 33, pp. 686–692.

    Article  MathSciNet  Google Scholar 

  24. Taimanov, I.A., Closed Extremals on Two-dimensional Manifolds, Russian Math. Surveys, 1992, vol. 47, no. 2, pp. 163–211.

    Article  MathSciNet  Google Scholar 

  25. Taimanov, I.A., The Type Numbers of Closed Geodesics, Regul. Chaotic Dyn., 2010, vol. 15, no. 1, pp. 84–100.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Taimanov.

Additional information

The work was supported by RFBR (grant 09-01-12130-ofi-m) and Max Planck Institute for Mathematics in Bonn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taimanov, I.A. Periodic magnetic geodesics on almost every energy level via variational methods. Regul. Chaot. Dyn. 15, 598–605 (2010). https://doi.org/10.1134/S1560354710040131

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354710040131

MSC2000 numbers

Key words

Navigation