Skip to main content
Log in

Breaking hyperbolicity for smooth symplectic toral diffeomorphisms

  • L.P. Shilnikov-75
  • Special Issue
  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

We study a smooth symplectic 2-parameter unfolding of an almost hyperbolic diffeomorphism on two-dimensional torus. This diffeomorphism has a fixed point of the type of the degenerate saddle. In the parameter plane there is a bifurcation curve corresponding to the transition from the degenerate saddle into a saddle and parabolic fixed point, separatrices of these latter points form a channel on the torus. We prove that a saddle period-2 point exists for all parameter values close to the co-dimension two point whose separatrices intersect transversely the boundary curves of the channel that implies the existence of a quadratic homoclinic tangency for this period-2 point which occurs along a sequence of parameter values accumulating at the co-dimension 2 point. This leads to the break of stable/unstable foliations existing for almost hyperbolic diffeomorphism. Using the results of Franks [1] on π 1-diffeomorphisms, we discuss the possibility to get an invariant Cantor set of a positive measure being non-uniformly hyperbolic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Franks, J., Anosov Diffeomorphisms, in Global Analysis: Proc. Sympos. Pure Math. (Berkeley, CA, 1968), vol.14, Providence, R.I.: AMS, 1970, pp. 61–93.

    Google Scholar 

  2. Katok, A. and Hasselblatt, B., Introduction to the Modern Theory of Dynamical Systems, Cambridge: Cambridge Univ. Press, 1995.

    MATH  Google Scholar 

  3. Oseledets V., A Multiplicative Ergodic Theorem: Characteristic Ljapunov, Exponents of Dynamical Systems, Tr. Mosk. Mat. Obs., 1968, vol. 19, pp. 179–210.

    Google Scholar 

  4. Anosov, D.V., Geodesic Flows on Closed Riemannian Manifolds with Negative Curvature, Tr. Mat. Inst. Steklova, 1967, vol. 90, pp. 3–210 [Proc. Steklov Inst. Math., 1967, vol. 90, pp. 1–212].

    MathSciNet  Google Scholar 

  5. Katok, A., Bernoulli Diffeomorphisms on Surfaces, Ann. of Math. (2), 1979, vol. 110, pp. 529–547.

    Article  MathSciNet  Google Scholar 

  6. Bochi, J., Genericity of Zero Lyapunov Exponents, Ergodic Theory Dynam. Systems, 2002, vol. 22, pp. 1667–1696.

    Article  MATH  MathSciNet  Google Scholar 

  7. Bochi, J. and Viana, M., Uniform (Projective) Hyperbolicity or No Hyperbolicity: A Dichotomy for Generic Conservative Maps, Ann. Inst. H.Poincaré Anal. Non Linéaire, 2002, vol. 19, no. 1, pp. 113–123.

    Article  MATH  MathSciNet  Google Scholar 

  8. Takens, F., A C 1-Counterexample to Moser’s Twist Theorem, Indag. Math., 1971, vol. 33, no. 4, pp. 379–386.

    MathSciNet  Google Scholar 

  9. Herman, M.-R., Sur les courbes invariantes par les difféomorphismes de l’anneau: V. 1, Astérisque, vol. 103, Paris: Soc. Math. France, 1983.

    Google Scholar 

  10. Herman, M.-R., Sur les courbes invariantes par les difféomorphismes de l’anneau: V. 2, Astérisque, vol. 104, Paris: Soc. Math. France, 1986.

    Google Scholar 

  11. Birkhoff, G., Surface Transformations and Their Dynamical Applications, Acta Math., 1922, vol. 43, no. 1, pp. 1–119.

    Article  MathSciNet  Google Scholar 

  12. Mather, J., Invariant Subsets for Area-Preserving Homeomorphisms of Surfaces, Mathematical Analysis and Applications, Part B, Adv. in Math. Suppl. Stud., vol. 7b, New York-London: Academic Press, 1981, pp. 531–562.

    Google Scholar 

  13. Franks, J. and Le Calvez, P., Regions of Instability for Non-Twist Maps, Ergodic Theory Dynam. Systems, 2003, vol. 23, no. 1, pp. 111–141.

    Article  MATH  MathSciNet  Google Scholar 

  14. Gelfreich, V. and Turaev, D., Universal Dynamics in a Neighbourhood of a Generic Elliptic Periodic Point, Regul. Chaotic Dyn., 2010, vol. 15, nos. 2–3, pp. 159–164.

    Article  MathSciNet  Google Scholar 

  15. Gavrilov, N.K. and Shilnikov, L.P., On Three-Dimensional Dynamical Systems Close to Systems with a Structurally Unstable Homoclinic Curve: P. 1, Mat. Sb. (N. S.), 1972, vol. 88(130), no. 4(8), pp. 475–492 [Mathematics of the USSR-Sbornik, 1972, vol. 17, no. 4, pp. 467–485].

    Google Scholar 

  16. Newhouse, S.E., The abundance of wild hyperbolic sets and nonsmooth stable sets for diffeomorphisms, Publ. Math. Inst. Hautes Études Sci., 1979, vol. 50, pp. 101–151.

    Article  MATH  MathSciNet  Google Scholar 

  17. Duarte, P., Elliptic Isles in Families of Area-Preserving Maps, Ergodic Theory Dynam. Systems, 2008, vol. 28, pp. 1781–1813.

    Article  MATH  MathSciNet  Google Scholar 

  18. Gonchenko, S. V. and Shilnikov, L.P., On Two-Dimensional Area-Preserving Diffeomorphisms with Infinitely Many Elliptic Islands, J. Stat. Phys., 2000, vol. 101, pp. 321–356.

    Article  MATH  MathSciNet  Google Scholar 

  19. Gonchenko, S. V., Shilnikov, L.P., and Turaev, D. V., Homoclinic Tangencies of Arbitrarily High Orders in Conservative and Dissipative Two-Dimensional Maps, Nonlinearity, 2007, vol. 20, pp. 241–275.

    Article  MATH  MathSciNet  Google Scholar 

  20. Przytycki, F., Examples of Conservative Diffeomorphisms of the Two-Dimensional Torus with Coexistence of Elliptic and Stochastic Behaviour, Ergodic Theory Dynam. Systems, 1982, vol. 2, pp. 439–463.

    Article  MATH  MathSciNet  Google Scholar 

  21. Lewowicz, J., Lyapunov Functions and Topological Stability, J. Differential Equations, 1980, vol. 38, pp. 192–209.

    Article  MATH  MathSciNet  Google Scholar 

  22. Simó, C., Invariant Curves Near Parabolic Points and Regions of Stability, Global Theory of Dynamical Systems: Proc. Internat. Conf. (Northwestern Univ., Evanston, Ill., 1979), Lecture Notes in Math., vol. 819, Berlin: Springer, 1980, pp. 418–424.

    Google Scholar 

  23. Catsigeras, E. and Enrich, Y., SRB Measures of Certain Almost Hyperbolic Diffeomorphisms with a Tangency, Discrete Contin. Dyn. Syst., 2001, vol. 7, no. 1, pp. 177–202.

    MATH  MathSciNet  Google Scholar 

  24. Liverani, C., Birth of an Elliptic Island in a Chaotic Sea, Math. Phys. Electron. J., 2004, vol. 10, paper 1, 13 p.

  25. Enrich, H., A Heteroclinic Bifurcation of Anosov Diffeomorphisms, Ergodic Theory Dynam. Systems, 1998, vol. 18, pp. 567–608.

    Article  MATH  MathSciNet  Google Scholar 

  26. Newhouse, S.E., Quasi-Elliptic Periodic Points in Conservative Dynamical Systems, Amer. J. Math., 1977, vol. 99, pp. 1061–1087.

    Article  MATH  MathSciNet  Google Scholar 

  27. Gonchenko, M. S. and Gonchenko, S.V., On Cascades of Elliptic Periodic Points in Two-Dimensional Symplectic Maps with Homocliniic Tangencies, Regul. Chaotic Dyn., 2009, vol. 14, no. 1, pp. 116–136.

    Article  MathSciNet  Google Scholar 

  28. Mather, J., Characterization of Anosov Diffeomorphisms, Indag. Math., 1968, vol. 30, pp. 479–483.

    MathSciNet  Google Scholar 

  29. Ruelle, D., Thermodynamic Formalism: The Mathematical Structures of Classical Equilibrium Statistical Mechanics, Reading, MA: Addison-Wesley, 1978.

    MATH  Google Scholar 

  30. Meyer, K.R., Generic Bifurcation of Periodic Points, Trans. Amer. Math. Soc., 1970, vol. 149, pp. 95–107.

    Article  MATH  MathSciNet  Google Scholar 

  31. Poston, T. and Stewart, I., Catastrophe Theory and Its Applications, London: Pitman, 1978.

    MATH  Google Scholar 

  32. Fontich, E., Stable Curves Asymptotic to a Degenerate Fixed Point, Nonlinear Anal., 1999, vol. 35, pp. 711–733.

    Article  MATH  MathSciNet  Google Scholar 

  33. Lewowicz, J. and Lima de Sá, E., Analytic Models of Pseudo-Anosov Maps, Ergodic Theory Dynam. Systems, 1986, vol. 6, pp. 385–392.

    Article  MATH  MathSciNet  Google Scholar 

  34. Markarian, R., Billiards with Pesin Region of Measure One, Comm. Math. Phys., 1988, vol. 118, pp. 87–97.

    Article  MATH  MathSciNet  Google Scholar 

  35. Gavrilov, N.K., On Some Bifurcations of Codimension Two Equilibria for Divergence-Free Vector Fields, Methods of the Qualitative Theory of Differential Equations, E.A. Leontovich-Andronova (Ed.), Gorki: Gorkov. Gos. Univ., 1985, pp. 46–55.

    Google Scholar 

  36. Arnold, V. I., Kozlov, V.V., and Neishtadt, A. I., Mathematical Aspects of Classical and Celestial Mechanics, Encyclopaedia of Math. Sci., vol. 3, Berlin: Springer, 1993.

    Google Scholar 

  37. Neishtadt, A. I., The Separation of Motion in Systems with Rapidly Rotating Phase, Prikl. Mat. Mekh., 1984, vol. 48, no. 2, pp. 197–204 [J. Appl. Math. Mech., 1984, vol. 48, no. 2, pp. 133–139].

    MathSciNet  Google Scholar 

  38. Gelfreich, V., Splitting of a Small Separatrix Loop Near the Saddle-Center Bifurcation in Area-Preserving Maps, Phys. D, 2000, vol. 136, pp. 266–279.

    Article  MATH  MathSciNet  Google Scholar 

  39. Grines, V. Z., On Topological Classification of A-Diffeomorphisms of Surfaces, J. Dyn. Control Syst., 2000, vol. 6, no. 1, pp. 97–126.

    Article  MATH  MathSciNet  Google Scholar 

  40. Bruno, A.D., Local Methods in Nonlinear Differential Equations, Berlin: Springer, 1989.

    MATH  Google Scholar 

  41. Biragov, V. S., Bifurcations in a Two-Parameter Family of Conservative Mappings that are Close to the Hénon Mapping, Methods of Qualitative Theory of Differential Equations, L.P. Shilnikov (Ed.), Gorki: Gorkov. Gos. Univ., 1987, pp. 10–24 [Selecta Math. Soviet., 1990, vol. 9, pp. 273–282].

    Google Scholar 

  42. Franks, J., Generalizations of the Poincaré-Birkhoff Theorem, Ann. of Math. (2), 1988, vol. 128, pp. 139–151.

    Article  MathSciNet  Google Scholar 

  43. Mañé, R., The Lyapunov Exponents of Generic Area Preserving Diffeomorphisms, Proc. Intern. Conf. on Dynamical Systems (Montevideo, 1995), Pitman Res. Notes Math. Ser., vol. 362, Harlow: Longman, 1996, pp. 110–119.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Lerman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lerman, L. Breaking hyperbolicity for smooth symplectic toral diffeomorphisms. Regul. Chaot. Dyn. 15, 194–209 (2010). https://doi.org/10.1134/S1560354710020085

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354710020085

MSC2000 numbers

Key words

Navigation