Skip to main content
Log in

The type numbers of closed geodesics

Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

This is a short survey on the type numbers of closed geodesics, on applications of the Morse theory to proving the existence of closed geodesics and on the recent progress in applying variational methods to the periodic problem for Finsler and magnetic geodesics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Morse, M., The Calculus of Variations in the Large, Providence, RI: Amer. Math. Soc., 1934.

    MATH  Google Scholar 

  2. Lusternik, L.A. and Schnirelmann, L.G., Topological Methods in Variational Problems, Proc. Mathematics and Mechanics Research Institute, Moscow State Univeristy, Moscow: GITTL, 1930 (Russian).

    Google Scholar 

  3. Schwarz, A.S., The Homologies of Spaces of Closed Curves, Trudy Moskov. Mat. Ob., 1960, vol. 9, pp. 3–44 (Russian).

    Google Scholar 

  4. Klingenberg, W., Riemannian Geometry, de Gruyter Studies in Mathematics, vol. 1, Berlin: Walter de Gruyter and Co., 1982.

    MATH  Google Scholar 

  5. Ballmann, W., On the Lengths of Closed Geodesics on Convex Surfaces, Invent. Math., 1983, vol. 71, pp. 593–597.

    Article  MATH  MathSciNet  Google Scholar 

  6. Bangert, V., On the Lengths of Closed Geodesics on Almost Round Spheres, Math. Z., 1986, vol. 191, pp. 549–558.

    Article  MATH  MathSciNet  Google Scholar 

  7. Ballmann, W., Thorbergsson, G., and Ziller, W., Existence of Closed Geodesics on Positively Curved Manifolds, J. Differential Geom., 1983, vol. 18, pp. 221–252.

    MATH  MathSciNet  Google Scholar 

  8. Anosov, D.V., Homology in the Space of Closed Curves on an n-dimensional Sphere, Math. USSR-Izv., 1982, vol. 18, pp. 403–422.

    Article  MATH  Google Scholar 

  9. Anosov, D.V., Generic Properties of Closed Geodesics, Math. USSR-Izv., 1983, vol. 21, pp. 1–29.

    Article  MATH  Google Scholar 

  10. Seifert, H. and Threlfall, W., Variationsrechnung im Grossen [Theorie von Marston Morse], Teubner: Leipzig and Berlin, 1938.

    Google Scholar 

  11. Klingenberg, W., Lectures on Closed Geodesics, Grundlehren der Mathematischen Wissenschaften, vol. 230, Berlin: Springer, 1978.

    MATH  Google Scholar 

  12. Anosov, D.V., Some Homotopies in a Space of Closed Curves, Math. USSR-Izv, 1981, vol. 17, pp. 423–453.

    Article  MATH  Google Scholar 

  13. Milnor, J., Morse Theory, Ann. of Math. Studies, vol. 51, Princeton, NJ: Princeton Univ. Press, 1963.

    MATH  Google Scholar 

  14. Bott, R., Nondegenerate Critical Manifolds, Ann. of Math. (2), 1954, vol. 60, pp. 248–261.

    Article  MathSciNet  Google Scholar 

  15. Pontryagin, L.S., Sur les nombres de Betti des groupes de Lie, C. R. Acad. Sci. Paris, 1935, vol. 200, pp. 1277–1280.

    MATH  Google Scholar 

  16. Pontryagin, L.S., Homologies in Compact Lie Groupsm Rec. Math. N. S. [Mat. Sbornik], 1939, vol. 6, no. 48, pp. 389–422.

    MATH  MathSciNet  Google Scholar 

  17. Al’ber, S.I., Topology of Function Spaces, Soviet Math. Dokl., 1966, vol. 7, pp. 700–704.

    MATH  Google Scholar 

  18. Hingston, N., Equivariant Morse Theory and Closed Geodesics, J. Differential Geom., 1984, vol. 19, pp. 85–116.

    MATH  MathSciNet  Google Scholar 

  19. Borel, A., Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts, Ann. of Math. (2), 1953, vol. 57, pp. 115–207.

    Article  MathSciNet  Google Scholar 

  20. Rademacher, H.-B., On the Average Indices of Closed Geodesics, J. Differential Geom., 1989, vol. 29, no. 1, pp. 65–83.

    MATH  MathSciNet  Google Scholar 

  21. Bott, R., On the Iteration of Closed Geodesics and the Sturm Intersection Theory, Comm. Pure Appl. Math., 1956, vol. 9, pp. 171–206.

    Article  MATH  MathSciNet  Google Scholar 

  22. Fet, A.I., On a Periodicity Problem in the Calculus of Variations, Soviet Math. Dokl., 1965, vol. 6, pp. 85–88.

    MATH  MathSciNet  Google Scholar 

  23. Gromoll, D. and Meyer, W., Periodic Geodesics on Compact Riemannian Manifolds, J. Differential Geometry, 1969, vol. 3, pp. 493–510.

    MATH  MathSciNet  Google Scholar 

  24. Long, Yiming and Zhu, Chaofeng, Closed Characteristics on Compact Convex Hypersurfaces in ℙ2n, Ann. of Math. (2), 2002, vol. 155, pp. 317–368.

    Article  MATH  MathSciNet  Google Scholar 

  25. Guba, V.S., A Finitely Generated Complete Group, Math. USSR-Izv., 1987, vol. 29, pp. 233–277.

    Article  MATH  Google Scholar 

  26. Ballmann, W., Geschlossene Geodätische auf Mannigfaltigkeiten mit unendlicher Fundamentalgruppe [Closed geodesics on manifolds with infinite fundamental group], Topology, 1986, vol. 25, no. 1, pp. 55–69.

    Article  MATH  MathSciNet  Google Scholar 

  27. Taimanov, I.A., Closed Geodesics on Non-simply-connected Manifolds, Russian Math. Surveys, 1985, vol. 40, no. 6, pp. 143–144.

    Article  MathSciNet  Google Scholar 

  28. Gromov, M., Three Remarks on Geodesic Dynamics and Fundamental Group, Enseign. Math. (2), 2000, vol. 46, pp. 391–402.

    MATH  MathSciNet  Google Scholar 

  29. Nabutovsky, A., Fundamental Group and Contractible Closed Geodesics. Comm. Pure Appl. Math., 1996, vol. 49, pp. 1257–1270.

    Article  MATH  MathSciNet  Google Scholar 

  30. Bangert, V. and Hingston, N., Closed Geodesics on Manifolds with Infinite Abelian Fundamental Group, J. Differential Geom., 1984, vol. 19, pp. 277–282.

    MATH  MathSciNet  Google Scholar 

  31. Lusternik, L.A. and Fet, A.I., Variational Problems on Closed Manifolds, Doklady Akad. Nauk SSSR (N.S.), 1951, vol. 81, pp. 17–18 (Russian).

    MathSciNet  Google Scholar 

  32. Taimanov, I.A., Closed Extremals on Two-dimensional Manifolds, Russian Math. Surveys, 1992, vol. 47, no. 2, pp. 163–211.

    Article  MathSciNet  Google Scholar 

  33. Vigué-Poirrier, M. and Sullivan, D., The Homology Theory of the Closed Geodesic Problem, J. Differential Geometry, 1976, vol. 11, no. 4, pp. 633–644.

    MATH  MathSciNet  Google Scholar 

  34. aBngert, V., On the Existence of Closed Geodesics on Two-spheres, Internat. J. Math., 1993, vol. 4, pp. 1–10.

    Article  MathSciNet  Google Scholar 

  35. Franks, J., Geodesics on S 2 and Periodic Points of Annulus Homeomorphisms, Invent. Math., 1992, vol. 108, pp. 403–418.

    Article  MATH  MathSciNet  Google Scholar 

  36. Hingston, N., On the Growth of the Number of Closed Geodesics on the Two-sphere, Internat. Math. Res. Notices, 1993, no. 9, pp. 253–262.

  37. Long, Yiming, and Duan, Huagui, Multiple closed geodesics on 3-spheres. Adv. Math., 2009, vol. 221, pp. 1757–1803.

    Article  MATH  MathSciNet  Google Scholar 

  38. Klingenberg, W. and Takens, F., Generic Properties of Geodesic Flows, Math. Ann., 1972, vol. 197, pp. 323–334.

    Article  MATH  MathSciNet  Google Scholar 

  39. Ballmann, W., Thorbergsson, G., and Ziller, W., Closed Geodesics and the Fundamental Group, Duke Math. J., 1981, vol. 48, pp. 585–588.

    Article  MATH  MathSciNet  Google Scholar 

  40. Rademacher, H.-B., On a Generic Property of Geodesic Flows, Math. Ann., 1994, vol. 298, pp. 101–116.

    Article  MATH  MathSciNet  Google Scholar 

  41. Ballmann, W., Der Satz von Lusternik-Schnirelmann, Bonner Math. Schriften, B. 102, Bonn: Univ. Bonn, 1978, pp. 1–25.

    Google Scholar 

  42. Anosov, D.V., Geodesics in Finsler Geometry, Proceedings of the International Congress of Mathematicians (Vancouver, B. C., 1974), vol. 2, Canad. Math. Congress, Montreal, Que., 1975, pp. 293–297 (Russian) [English version: Trans. Amer. Math. Soc., vol. 109, 1977, pp. 81–85].

    MathSciNet  Google Scholar 

  43. Katok, A.B., Ergodic Perturbations of Degenerate Integrable Hamiltonian Systems, Math. USSR-Izv., 1973, vol. 7, pp. 535–572.

    Article  Google Scholar 

  44. Ziller, W., Geometry of the Katok Examples, Ergodic Theory Dynam. Systems, 1983, vol. 3, pp. 135–157.

    Article  MATH  MathSciNet  Google Scholar 

  45. Bangert, V. and Long, Yiming, The Existence of Two Closed Geodesics on Every Finsler 2-Sphere, Math. Ann., 2010, vol. 346, pp. 335–366.

    Article  MATH  Google Scholar 

  46. Long, Yiming, Multiplicity and Stability of Closed Geodesics on Finsler 2-Spheres, J. Eur. Math. Soc. (JEMS), 2006, vol. 8, pp. 341–353.

    Article  MATH  MathSciNet  Google Scholar 

  47. Rademacher, H.-B., A Sphere Theorem for Non-reversible Finsler Metrics, Math. Ann., 2004, vol. 328, pp. 373–387.

    Article  MATH  MathSciNet  Google Scholar 

  48. Novikov, S.P., The Hamiltonian Formalism and a Multivalued Analogue of Morse Theory, Russian Math. Surveys, 1982, vol. 37, no. 5, pp. 1–56.

    Article  MATH  Google Scholar 

  49. Novikov, S.P., Multivalued Functions and Functionals. An Analogue of the Morse Theory, Soviet Math. Dokl., 1981, vol. 24, pp. 222–226.

    MATH  Google Scholar 

  50. Novikov, S.P. and Shmel’tser, I., Periodic Solutions of Kirchhoff Equations for the Free Motion of a Rigid Body in a Fluid and the Extended Lyusternik-Shnirel’man-Morse Theory. I, Functional Anal. Appl., 1981, vol. 15, no. 3, pp. 197–207.

    Article  MathSciNet  Google Scholar 

  51. Novikov, S.P., Variational Methods and Periodic Solutions of Equations of Kirchhoff Type. II, Functional Anal. Appl., 1981, vol. 15, no. 4, pp. 263–274.

    Article  Google Scholar 

  52. Farber, M., Topology of Closed One-forms, Mathematical Surveys and Monographs, vol. 108., Providence, RI: Amer. Math. Soc., 2004.

    MATH  Google Scholar 

  53. Pajitnov, A.V., Circle-valued Morse Theory, de Gruyter Studies in Mathematics, vol. 32, Berlin: Walter de Gruyter and Co., 2006.

    MATH  Google Scholar 

  54. Taimanov, I.A., The Principle of Throwing out Cycles in Morse-Novikov Theory, Soviet Math. Dokl., 1983, vol. 27, pp. 43–46.

    Google Scholar 

  55. Novikov, S.P. and Taimanov, I.A., Periodic Extremals of Multivalued or not Everywhere Positive Functionals, Soviet Math. Dokl., 1984, vol. 29, pp. 18–20.

    MATH  Google Scholar 

  56. Bahri, A. and Taimanov, I.A., Periodic Orbits in Magnetic Fields and Ricci Curvature of Lagrangian Systems, Trans. Amer. Math. Soc., vol. 350, 1998, pp. 2697–2717.

    Article  MATH  MathSciNet  Google Scholar 

  57. Grinevich, P.G. and Novikov, S.P., Nonselfintersecting Magnetic Orbits on the Plane. Proof of the Overthrowing of Cycles Principle, Topics in Topology and Mathematical Physics, Amer. Math. Soc. Transl. Ser. 2, vol. 170, Providence, RI: Amer. Math. Soc., 1995, pp. 59–82.

    Google Scholar 

  58. Taimanov, I.A., Non-self-intersecting Closed Extremals of Multivalued or Not-everywhere-positive Functionals, Math. USSR-Izv., 1992, vol. 38, pp. 359–374.

    Article  MathSciNet  Google Scholar 

  59. Contreras, G., Macarini, L., and Paternain, G., Periodic Orbits for Exact Magnetic Flows on Surfaces, Int. Math. Res. Not. 2004, no. 8, pp. 361–387.

  60. Contreras, G., The Palais-Smale Condition on Contact Type Energy Levels for Convex Lagrangian Systems, Calc. Var. Partial Differential Equations, 2006, vol. 27, pp. 321–395.

    Article  MATH  MathSciNet  Google Scholar 

  61. Arnold, V.I., First Steps in Symplectic Topology, Russian Math. Surveys, 1986, vol. 41, no. 6, pp. 1–21.

    Article  Google Scholar 

  62. Kozlov, V.V., Calculus of Variations in the Large and Classical Mechanics, Russian Math. Surveys, 1985, vol. 40, no. 2, pp. 37–71.

    Article  MATH  Google Scholar 

  63. Ginzburg V. and Gürel, B., Periodic Orbits of Twisted Geodesic Flows and the Weinstein-Moser Theorem, Comment. Math. Helv., 2009, vol. l84, pp. 865–907.

    Article  Google Scholar 

  64. Schneider, M., Closed Magnetic Geodesics on S 2, 2008, arXiv:0808.4038v3.

  65. Ginzburg, V.L., On the Existence and Non-existence of Closed Trajectories for Some Hamiltonian Flows, Math. Z., 1996, vol. 223, pp. 397–409.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Taimanov.

Additional information

A translation of an appendix to the Russian edition of “Calculus of variations in the large” by M.Morse. The work was supported by the Russian Foundation of Basic Research (grant 09-01-00598) and Max Planck Institute for Mathematics in Bonn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taimanov, I.A. The type numbers of closed geodesics. Regul. Chaot. Dyn. 15, 84–100 (2010). https://doi.org/10.1134/S1560354710010053

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354710010053

MSC2000 numbers

Key words

Navigation