Skip to main content

Dynamics of the tippe top via Routhian reduction


We consider a tippe top modeled as an eccentric sphere, spinning on a horizontal table and subject to a sliding friction. Ignoring translational effects, we show that the system is reducible using a Routhian reduction technique. The reduced system is a two dimensional system of second order differential equations, that allows an elegant and compact way to retrieve the classification of tippe tops in six groups as proposed in [1] according to the existence and stability type of the steady states.

This is a preview of subscription content, access via your institution.


  1. Ciocci, M.C., Lamb, J.S.W., Langerock, B., and Malengier, B., Dynamics of the spherical Tippe Top with Small Friction, submitted for publication.

  2. Gray, C.G. and Nickel, B.G., Constants of the Motion for Nonslipping Tippe Tops and Other Tops with Round Pegs, Am. J. Phys., 2000, vol. 68, no. 9, pp. 821–828.

    Article  Google Scholar 

  3. Ebenfeld, S. and Scheck, F., A New Analysis of the Tippe Top: Asymptotic States and Lyapunov Stability, Annals of Physics, 1995, vol. 243, pp. 195–217.

    MATH  Article  MathSciNet  Google Scholar 

  4. Rauch-Wojciechowski, S. and Sköldstam, M., Glad, T., Mathematical Analysis of the Tippe Top, Regul. Chaotic Dyn., 2005, vol. 10, pp. 333–362.

    Article  MathSciNet  MATH  Google Scholar 

  5. Pars, L.A., A Treatise on Analytical Dynamics, Heinemann Educational Books, 1965.

  6. Bou-Rabee, N.M., Marsden, J.E., and Romero, L.A., Tippe Top Inversion as a Dissipation Induced Instability, SIAM J. A. Dyn. Sys., 2004, vol. 3, pp. 352–377.

    MATH  Article  MathSciNet  Google Scholar 

  7. Ueda, T., Sasaki, K., and Watanabe, S., Motion of the Tippe Top: Gyroscopic Balance Condition and Stability, SIADS, 2005, vol. 4, no. 4, pp. 1159–1194, Society for Industrial and Applied Mathematics.

    MATH  MathSciNet  Google Scholar 

  8. Cohen, C.M., The Tippe Top Revisited, Am. J. Phys., 1977, vol. 45, pp. 12–17.

    Article  Google Scholar 

  9. Kane, T.R. and Levinson, D., A Realistic Solution of the Symmetric Top Problem, J. Appl. Mech., 1978, vol. 45, pp. 903–909.

    Google Scholar 

  10. Moffatt, H.K., Shimomura, Y., and Branicki, M., Dynamics of Axisymmetric Body Spinning on a Horizontal Surface. I. Stability and the Gyroscopic Approximation, Proc. R. Soc. Lond. A, 2004, vol. 460, pp. 3643–3672.

    MATH  MathSciNet  Article  Google Scholar 

  11. Or, A.C., The Dynamics of a Tippe Top, SIAM J. on A. Math., 1994, vol. 54, no. 3, pp. 597–609.

    MATH  Article  Google Scholar 

  12. Barger, V.D. and Olsson, M.G., Classical Mechanics. A Modern Perspective, McGraw-Hill Book Company, 1973.

  13. Tokieda, T., Private Communications, The Hycaro Tipe Top was Presented for the First Time During the Meeting, Geometric Mechanics and its Applications (MASIE), 2004, vol. 7, pp. 12–16, EPF Lausanne, CH.

    Google Scholar 

  14. Friedl, C., Der Stehaufkreisel, Zulassungsarbeit zum 1. Staatsexamen, Universität Augsburg,

  15. Cushman, R., The Routh’s Sphere, Reports on Mathematical Physics, 1998, vol. 42 pp. 47–70.

    MATH  Article  MathSciNet  Google Scholar 

  16. Borisov, A.V. and Mamaev, I.S., Rolling of a Rigid Body on Plane and Sphere. Hierarchy of Dynamics, Regular and Chaotic Dyn., 2002, vol. 7, no. 2, 177–200.

    MATH  Article  MathSciNet  Google Scholar 

  17. Torkel Glad, S., Petersson, D., and Rauch-Wojciechowski, S., Phase Space of Rolling Solutions of the Tippe Top, SIGMA, 2007, vol. 3, 041, 14 pages.

  18. Jellet, J.H., A Treatise on the Theory of Friction, London: MacMillan, 1872.

    Google Scholar 

  19. Routh, E.J., Dynamics of a System of Rigid Bodies, NY: MacMillan, 1905.

    MATH  Google Scholar 

  20. Marsden, J.E. and Ratiu, T.S., and Scheurle, J., Reduction Theory and the Lagrange-Routh Equations. Journal of Math. Phys., 2000, vol. 41 no. 6, pp. 3379–3429.

    MATH  Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to M. C. Ciocci.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ciocci, M.C., Langerock, B. Dynamics of the tippe top via Routhian reduction. Regul. Chaot. Dyn. 12, 602–614 (2007).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

MSC2000 numbers

  • 37J15
  • 37J25
  • 70E18
  • 70H03
  • 70H33

Key words

  • tippe top
  • eccentric sphere
  • Lagrangian equations
  • symmetries
  • Routhian reduction
  • relative equilibria
  • (linear) stability
  • bifurcation