Skip to main content
Log in

Ganoderma Lucidum-Modified Clay Epoxy Coating: Investigation of Thermal, Mechanical, Anticorrosion, and Antimicrobial Properties

  • COMPOSITES
  • Published:
Polymer Science, Series B Aims and scope Submit manuscript

Abstract

Herein, firstly, sodium montmorillonite (Na+-MMT) was modified with Ganoderma lucidum (GL), and then the anti-corrosion properties of new nanoparticles (GL-MMT) were evaluated. For this purpose, GL-MMT was added to epoxy (EP), and their nanocomposite was prepared. GL-MMT was evaluated by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscope (TEM). Polarization and salt spray tests showed that GL‑MMT improved corrosion resistance. The hydrophobic nature of GL-MMT caused the hydrophobic properties to be observed in nanocomposites so that the EP/3% GL-MMT showed a contact angle of 73°. Also, the results of thermogravimetric (TGA) analysis, adhesion strength, and tensile test showed that GL‑MMT improves the properties of the coating. This enhanced in properties is due to the uniform distribution of GL-MMT in the matrix and also the polymer chains are easily able to penetrate into the MMT galleries. Moreover, the antimicrobial results showed that the coatings containing GL-MMT are inhibitory and killing against Staphylococcus epidermidis and Streptococcus pyogenes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

REFERENCES

  1. S. A. Haddadi, E. Alibakhshi, G. Bahlakeh, B. Ramezanzadeh, and M. Mahdavian, J. Mol. Liq. 284, 682 (2019).

    Article  CAS  Google Scholar 

  2. R. K. Suleiman, A. M. Kumar, A. Y. Adesina, F. A. Al-Badour, M. H. Meliani, and T. A. Saleh, Corros. Sci. 169, 108637 (2020).

  3. D. Han, J. Li, N. Wang, and K. Wan, Int. J. Electrochem. Sci. 15, 9631 (2020).

    Article  Google Scholar 

  4. A. K. Hussain, N. Seetharamaiah, M. Pichumani, and C. S. Chakra, Prog. Org. Coat. 153, 106040 (2021).

  5. M. A. Farhaninejad, D. Zaarei, I. Danaee, and F. Baniasad, Prot. Met. Phys. Chem. Surf. 57, 190 (2021).

    Article  CAS  Google Scholar 

  6. L. T. Popoola, Corros. Rev. 37, 71 (2019).

    Article  CAS  Google Scholar 

  7. A. Fateh, M. Aliofkhazraei, and A. R. Rezvanian, Arabian J. Chem. 13, 481 (2020).

    Article  CAS  Google Scholar 

  8. Z. Tang, Curr. Opin. Solid State Mater. Sci. 23, 100759 (2019).

  9. M. Sheydaei, M. Edraki, and S. M. Radeghi Mehrjou, Gels 9, 490 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. J. Hou, G. Zhu, and J. Zheng, Polym. Sci., Ser. B 53, 546 (2011).

    Article  CAS  Google Scholar 

  11. E. Edraki, M. Sheydaei, D. Zaarei, A. Salmasifar, and B. Azizi, Polym. Sci., Ser. B 64, 756 (2022).

    Article  Google Scholar 

  12. M. Edraki and M. Sheydaei, Russ. J. Appl. Chem. 95, 1481 (2022).

    Article  CAS  Google Scholar 

  13. M. Sheydaei, M. Edraki, and F. S. J. Abad, Iran. Polym. J. 32, 143 (2023).

    Article  Google Scholar 

  14. R. Suarez-Hernandez, G. F. Dominguez-Patino, J. G. Gonzalez-Rodriguez, I. Tello, V. M. Salinas-Bravo, and J. G. Chacon-Nava, J. Nat. Prod. Resour. 2, 58 (2016).

    Google Scholar 

  15. C. R. Cheng, W. Emori, K. Wei, H. Louis, T. O. Unimuke, P. C. Okonkwo, D. I. Njoku, and P. C. Okafor, J. Adhes. Sci. Technol. 36, 2708 (2022).

    Article  CAS  Google Scholar 

  16. O. Taofiq, S. A. Heleno, R. C. Calhelha, M. J. Alves, L. Barros, A. M. González-Paramás, M. F. Barreiro, and I. C. Ferreira, Food Chem. Toxicol. 108, 139 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. M. H. Shahini, N. Taheri, H. E. Mohammadloo, and B. Ramezanzadeh, J. Taiwan Inst. Chem. Eng. 126, 252 (2021).

    CAS  Google Scholar 

  18. A. Khan, A. Hassanein, S. Habib, M. Nawaz, R. A. Shakoor, and R. Kahraman, ACS Appl. Mater. Interfaces 12, 37571 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. M. Tabish, G. Yasin, M. J. Anjum, M. U. Malik, J. Zhao, Q. Yang, S. Manzoor, H. Murtaza, and W. Q. Khan, J. Mater. Res. Technol. 10, 390 (2021).

    Article  CAS  Google Scholar 

  20. M. H. Haghighat and A. Mohammad-Khah, Acta Chim. Slov. 67, 1072 (2020).

    Article  CAS  PubMed  Google Scholar 

  21. O. Ruíz de Azúa, N. Agulló, J. Arbusà, and S. Borrós, Polymers 15, 252 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  22. E. Edraki, M. Sheydaei, E. Vessally, and A. Salmasifar, Iran. J. Chem. Chem. Eng. 42, 2775 (2023).

    Google Scholar 

  23. J. Macan, H. Ivankovic, M. Ivankovic, and H. J. Mencer, J. Appl. Polym. Sci. 92, 498 (2004).

    Article  CAS  Google Scholar 

  24. E. Ricky, E. Lugwisha, and J. Philip, Tanz. J. Sci. 47, 112 (2021).

    Google Scholar 

  25. M. Sheydaei, V. Pouraman, E. Alinia-Ahandani, and S. Shahbazi-Ganjgah, J. Sulfur Chem. 43, 376 (2022).

    Article  CAS  Google Scholar 

  26. B. Sangeetha, A. S. Krishnamoorthy, D. Amirtham, D. J. Sundara Sharmila, P. Renukadevi, and V. Malathi, Curr. Appl. Sci. Technol. 38, 1 (2020).

    Google Scholar 

  27. M. Sheydaei, J. Sulfur Chem. 43, 643 (2022).

    Article  CAS  Google Scholar 

  28. R. Suarez-Hernandez, G. Dominguez-Patiño, I. Tello, and J. G. Gonzalez-Rodriguez, Chem. Sci. Rev. Lett. 3, 425 (2014).

    Google Scholar 

  29. M. Sheydaei, Polym. Sci., Ser. B 65, 201 (2023).

    Article  Google Scholar 

  30. M. W. Ho, C. K. Lam, K. Lau, D. H. L. Ng, and D. Hui, Compos. Struct. 75, 415 (2006).

    Article  Google Scholar 

  31. A. Abdulmajid, T. S. Hamidon, and M. H. Hussin, J. Coat. Technol. Res. 19, 527 (2022).

    Article  CAS  Google Scholar 

  32. M. G. Campo and G. M. Corral, J. Phys. Condens. Matter. 34, 294001 (2022).

  33. J. Tang, Y. Zou, Y. Gong, Z. Xu, J. Wan, G. Wei, and Q. Zhang, ACS Chem. Neurosci. 14, 897 (2023).

    Article  CAS  PubMed  Google Scholar 

  34. R. Karishma and M. Rachana, PharmacologyOnline 3, 1923 (2021).

    CAS  Google Scholar 

  35. M. Daglia, Curr. Opin. Biotechnol. 23, 174 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milad Sheydaei.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milad Sheydaei, Edraki, M. & Javanbakht, S. Ganoderma Lucidum-Modified Clay Epoxy Coating: Investigation of Thermal, Mechanical, Anticorrosion, and Antimicrobial Properties. Polym. Sci. Ser. B 65, 991–1000 (2023). https://doi.org/10.1134/S1560090424600153

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560090424600153

Navigation