Skip to main content
Log in

Nitrones and Nitroso Compounds in the Coupling Reactions for the Synthesis of Macromolecular Structures Based on Polystyrene

  • SYNTHESIS
  • Published:
Polymer Science, Series B Aims and scope Submit manuscript

Abstract

The capacity of the coupling reactions of polystyrene bearing an ω-terminal bromine group in the presence of various nitrones and nitroso compounds has been disclosed. As exemplified by the coupling using С-phenyl-N-tert-butylnitrone, acetonitrile and tetrahydrofuran have been found the best solvents of the probed series (toluene, ethyl acetate, benzene, acetonitrile, and tetrahydrofuran). The said solvents have revealed the strongest coordination ability towards the catalytical system based on copper(I) bromide and have afforded high coupling degree (above 90%) preserving low polydispersity of the synthesized samples. It has been shown that the nitroso compounds involved in the coupling with styrene favor the formation of terminal nitroxyl fragments. In contrast to nitroso compounds, the nitrones have afforded symmetrical high-molecular alkoxyamines bearing a nitroxyl fragment in the middle of the polymer chain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Reversible Deactivation Radical Polymerization: Mechanisms and Synthetic Methodologies, Ed. by K. Matyjaszewski, H. Gao, B. S. Sumerlin, and N. V. Tsarevsky (Am. Chem. Soc., Washington, 2018).

    Google Scholar 

  2. Nitroxide Mediated Polymerization: From Fundamentals to Applications in Materials Science, Ed. by D. Gigmes (The Royal Society of Chemistry, UK, 2015).

    Google Scholar 

  3. G. A. Moad, J. Polym. Sci., Part A: Polym. Chem. 57 (3), 216 (2019).

    Article  CAS  Google Scholar 

  4. S. Coiai, E. Passaglia, and F. Cicogna, Polym. Int. 68 (1), 27 (2019).

    Article  CAS  Google Scholar 

  5. T. G. Ribelli, F. Lorandi, M. Fantin, and K. Matyjaszewski, Macromol. Rapid Commun. 40 (1) Art. 1800616 (2018).

  6. X. Pan, M. Fantin, F. Yuan, and K. Matyjaszewski, Chem. Soc. Rev. 47 (14), 5457 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. D. F. Grishin and I. D. Grishin, Russ. Chem. Rev. 90 (2), 231 (2021).

    Article  CAS  Google Scholar 

  8. A. Anastasaki, J. Willenbacher, C. Fleischmann, W. R. Gutekunst, and C. J. Hawker, Polym. Chem. 8 (4), 689 (2017).

    Article  CAS  Google Scholar 

  9. G. Wang and J. Huang, Polym. Chem. 5 (2), 277 (2014).

    Article  CAS  Google Scholar 

  10. Z. N. Zhang, G. W. Wang, and J. L. Huang, J. Polym. Sci., Part A: Polym. Chem. 49 (13), 2811 (2011).

    Article  CAS  Google Scholar 

  11. E. H. H. Wong, C. Boyer, M. H. Stenzel, C. Barner-Kowollik, and T. Junkers, Chem. Commun. 46 (11), 1959 (2010).

    Article  CAS  Google Scholar 

  12. E. H. H. Wong, M. H. Stenzel, T. Junkers, and C. Barner-Kowollik, Macromolecules 43 (8), 3785 (2010).

    Article  CAS  Google Scholar 

  13. E. H. H. Wong, O. Altintas, M. H. Stenzel, C. Barner-Kowollik, and T. Junkers, Chem. Commun. 47 (19), 5491 (2011).

    Article  CAS  Google Scholar 

  14. L. Barner, A. S. Quick, A. P. Vogt, V. Winkler, T. Junkers, and C. Barner-Kowollik, Polym. Chem. 3 (8), 2266 (2012).

    Article  CAS  Google Scholar 

  15. C. Detrembleur, A. Debuigne, O. Altintas, M. Conradi, E. H. H. Wong, C. Jerome, C. Barner-Kowollik, and T. Junkers, Polym. Chem. 3 (1), 135 (2012).

    Article  CAS  Google Scholar 

  16. A. F. Voter, E. S. Tillman, P. M. Findeis, and S. C. Radzinski, ACS Macro Lett. 1 (8), 1066 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. S. C. Blackburn, K. D. Myers, and E. S. Tillman, Polymer 68, 284 (2015).

    Article  CAS  Google Scholar 

  18. M. M. Arce, C. W. Pan, M. M. Thursby, J. P. Wu, E. M. Carnicom, and E. S. Tillman, Macromolecules 49 (20), 7804 (2016).

    Article  CAS  Google Scholar 

  19. J. P. Wu, C. W. Pan, K. E. Heiler, M. E. Ching, and E. S. Tillman, Polymer 127, 66 (2017).

    Article  CAS  Google Scholar 

  20. M. Du, C. Deng, X. Wu, H. Liu, and H. Liu, Macromol. Chem. Phys. 218 (15), Art. 1700069 (2017).

  21. E. V. Kolyakina, F. H. Shoipova, A. B. Alyeva, and D. F. Grishin, Russ. Chem. Bull. 70 (9), 1736 (2021).

    Article  CAS  Google Scholar 

  22. V. Sciannamea, R. Jérôme, and C. Detrembleur, Chem. Rev. 108 (3), 1104 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. E. V. Kolyakina and D. F. Grishin, Usp. Khim. 78 (6), 579 (2009).

    Article  Google Scholar 

  24. D. F. Grishin, L. L. Semenycheva, and E. V. Kolyakina, Dokl. Akad. Nauk 362 (5), 634 (1998).

    CAS  Google Scholar 

  25. E. V. Kolyakina, L. L. Semenycheva, and D. F. Grishin, Polym. Sci., Ser. A 43 (12), 1223 (2001).

    Google Scholar 

  26. M. V. Pavlovskaya, E. V. Kolyakina, V. V. Polyanskova, L. L. Semenycheva, and D. F. Grishin, Zh. Prikl. Khim. 75, 1905 (2002).

    Google Scholar 

  27. M. Yu. Zaremski, A. P. Orlova, E. S. Garina, A. V. Olenin, M. B. Lachinov, and V. B. Golubev, Polym. Sci., Ser. A 45 (6), 502 (2003).

    Google Scholar 

  28. M. Yu. Zaremski, A. L. Reznichenko, Yu. V. Grinevich, E. S. Garina, M. B. Lachinov, and V. B. Golubev, Polym. Sci., Ser. A 47 (6), 908 (2005).

    Google Scholar 

  29. V. Sciannamea, C. Guerrero-Sanchez, U. S. Schubert, J.-M. Catala, R. Jerome, and C. Detrembleur, Polymer 46 (23), 9632 (2005).

    Article  CAS  Google Scholar 

  30. V. Sciannamea, J. M. Catala, R. Jerome, and C. Detrembleur, J. Polym. Sci., Part A: Polym. Chem. 45 (7), 1219 (2007).

    Article  CAS  Google Scholar 

  31. D. F. Grishin, E. V. Kolyakina, M. V. Pavlovskaya, M. A. Lazarev, and A. A. Shchepalov, in Controlled Living Radical Polymerization: Progress in RAFT, DT, NMP and OMRP. ACS Symp. Ser., Ed. by K. Matyjiaszewski (Am. Chem. Soc., Washington, 2009), Vol. 1024, p. 95.

    Google Scholar 

  32. E. V. Kolyakina, A. B. Alyeva, E. V. Sazonova, A. A. Shchepalov, and D. F. Grishin, Izv. Akad. Nauk, Ser. Khim., No. 8, 1585 (2019).

  33. E. V. Kolyakina, A. B. Alyeva, E. V. Sazonova, E. A. Zakharychev, and D. F. Grishin, Polym. Sci., Ser. B 62, 328 (2020).

    Article  CAS  Google Scholar 

  34. E. V. Kolyakina, A. B. Alyeva, E. A. Zakharychev, and D. F. Grishin, Izv. Akad. Nauk, Ser. Khim. 70 (10), 1997 (2021).

    CAS  Google Scholar 

  35. E. H. H. Wong, T. Junkers, and C. Barner-Kowollik, J. Polym. Sci., Part A: Polym. Chem. 46 (21), 7273 (2008).

    Article  CAS  Google Scholar 

  36. T. Junkers, E. H. H. Wong, M. H. Stenzel, and C. Barner-Kowollik, Macromolecules 42 (14), 5027 (2009).

    Article  CAS  Google Scholar 

  37. A. Weissberger, E. Proskauer, J. Riddick, and E. Toops, Organic Solvents (Interscience Publ., New York, 1955).

    Google Scholar 

  38. R. R. Holmes, R. P. Bayer, and A. Simple, J. Am. Chem. Soc. 82 (13), 3454 (1960).

    Article  CAS  Google Scholar 

  39. L. J. Smith and F. L. Taylor, J. Am. Chem. Soc. 57 (8), 2460 (1935).

    Article  CAS  Google Scholar 

  40. J. C. Stowell, Org. Chem. 36, 3055 (1971).

    Article  CAS  Google Scholar 

  41. W. D. Emmons, J. Am. Chem. Soc. 79 (21), 5739 (1957).

    Article  CAS  Google Scholar 

  42. J. Hamer and A. Macaluso, Chem. Rev. 64 (4), 473 (1964).

    Article  CAS  Google Scholar 

  43. U. Paulsen and B. Lindeke, Acta. Pharm. Suec. 15 (4), 264 (1978).

    CAS  PubMed  Google Scholar 

  44. I. A. Kirilyuk, I. A. Grigor’ev, and L. B. Volodarskii, Izv. Akad. AN SSSR, Ser. Khim., No. 9, 2113 (1991).

  45. R. Neumann, F. de La Vega, and A. Bar-On, Org. Chem. 60 (5), 1315 (1995).

    Article  CAS  Google Scholar 

  46. Nitrile Oxides, Nitrones, and Nitronates in Organic Synthesis: Novel Strategies in Synthesis, Ed. by H. Feuer, 2nd ed. (Wiley, USA, 2008).

    Google Scholar 

  47. C. Reichardt, Solvents and Solvent Effects in Organic Chemistry (Wiley-VCH: Weinheim, 2003).

    Google Scholar 

  48. Handbook of Solvents, Ed. by G. Wypych (William Andrew Publ., ChemTec Publ., Toronto, New York, 2001).

    Google Scholar 

  49. R. Schmid, V. N. Sapunov, Non-formal Kinetics. In Search for Chemical Reaction Pathways (Verlag Chemie, Weinheim, 1982).

    Google Scholar 

  50. S. Youn, D. Y. Kim, W. J. Cho, J. M. L. Madridejos, H. M. Lee, M. Kolaski, J. Lee, C. Baig, S. K. Shin, M. Filatov, and K. S. Kim, J. Phys. Chem. A 120 (46), 9305 (2016).

    Article  CAS  PubMed  Google Scholar 

  51. C. Sambiagio, S. P. Marsden, A. J. Blacker, and P. C. McGowan, Chem. Soc. Rev. 43 (10), 3525 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. V. E. Zubarev, The Method of Spin Traps: Application in Chemistry, Biology, and Medicine (Mosk. Gos. Univ., Moscow, 1984) [in Russian].

    Google Scholar 

Download references

ACKNOWLEDGMENTS

Authors are grateful to I.A. Kirilyuk and I.F. Zhurko (Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, RAS) for the provided nitrones (BMPO, DIO, and DIOO).

Funding

This study was financially supported by the Russian Foundation for Basic Research (project code 20-03-00150).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. F. Grishin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Karpushkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolyakina, E.V., Shoipova, F.K. & Grishin, D.F. Nitrones and Nitroso Compounds in the Coupling Reactions for the Synthesis of Macromolecular Structures Based on Polystyrene. Polym. Sci. Ser. B 64, 359–372 (2022). https://doi.org/10.1134/S1560090422700257

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560090422700257

Navigation