Skip to main content
Log in

Enhancing Glass Transition Temperature of Poly(methylmethacrylate) by Incorporating Methacrylate-Functional Silane Grafted SiO2 Nanoparticles

  • COMPOSITES
  • Published:
Polymer Science, Series B Aims and scope Submit manuscript

Abstract

Nanocomposites attract the attention of researchers due to the increasing demand on materials having unique properties. Incorporation of nanoparticles into polymers considerably improves some materials properties such as thermal stability. In current study, PMMA/SiO2 hybrid nanocomposites including ungrafted and grafted silica nanoparticles have been prepared. The surfaces of SiO2 nanoparticles were grafted with 3-(methacryloyloxypropyl)trimethoxysilane (MPTS) and 3-(methacryloyloxypropyl)triethoxysilane (MPTES) by sol-gel technique. The structure, morphology and thermal properties of the obtained bulk materials were investigated by FTIR, SEM-EDX, TGA and DSC. Based on the studies of infrared spectroscopy, polymerization of MMA monomers was approved by following the intensity of acrylate group. Thermal characteristics of nanocomposite structures enhanced remarkably as SiO2 nanoparticles were introduced to the polymer matrix and glass transition temperature Tg value reached to the highest (166°C) for MPTES@20% SiO2-PMMA hybrid nanocomposite. According to SEM analysis, the most homogenous structure belonged to MPTES@20% SiO2-PMMA hybrid nanocomposite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. D. Abliz, Y. Duan, L. Steuernagel, L. Xie, D. Li, and G. Ziegmann, Polym. Compos. 21, 341 (2013).

    Article  CAS  Google Scholar 

  2. M. H. Naveen, N. G. Gurudatt, and Y.-B. Shim, Appl. Mater. Today 9, 419 (2017).

    Article  Google Scholar 

  3. M. Dziadek, E. Stodolak-Zych, and K. Cholewa-Kowalska, Mater. Sci. Eng., C 71, 1175 (2017).

    Article  CAS  Google Scholar 

  4. L. Liu, D. Ye, R. Dong, D. Chen, S. Li, K. Cao, G. Cheng, S. Chen, and W. Huang, ACS Appl. Energy Mater. 3, 4068 (2020).

    CAS  Google Scholar 

  5. B. H. Patel and P. V. Joshi, J. Packag. Technol. Res. 4, 95 (2020).

    Article  Google Scholar 

  6. H. Abbas, S. Iqbal, S. Ahmad, and N. Arfin, Mater. Res. Express 5 (8), 085312 (2018).

  7. S. Rattan, P. Singhal, and A. L. Verma, Polym. Eng. Sci. 53, 2045 (2013).

    Article  CAS  Google Scholar 

  8. T. Lin and Y. Zheng, Micro Nano Lett. 8, 217 (2013).

    Article  CAS  Google Scholar 

  9. X. Song, X. Wang, H. Wang, W. Zhong, and Q. Du, Mater. Chem. Phys. 109, 143 (2008).

    Article  CAS  Google Scholar 

  10. V. I. Bykov, K. L. Makovetskii, D. S. Popov, M. V. Bermeshev, T. A. Butenko, and Yu. A. Talyzenkov, Dokl. Chem. 439, 227 (2011).

    Article  CAS  Google Scholar 

  11. P. Xu, H. Wang, R. Tong, Q. Du, and W. Zhong, Colloid Polym. Sci. 284, 755 (2006).

    Article  CAS  Google Scholar 

  12. E. Arpac, S. Güven, Ş. Yılmaz, J. C. Schmidt, H. Schmidt, D. Mochizuki, and K. Osada, WO Patent No. WO/2009/115566 (2009).

  13. P. Judeinstein and C. Sanchez, J. Mater. Chem. 6, 511 (1996).

    Article  CAS  Google Scholar 

  14. B. M. Novak, Adv. Mater. 5, 422 (1993).

    Article  CAS  Google Scholar 

  15. V. N. T. Satyanarayana Kuchibhatla, A.S. Karakoti, and S. Seal, JOM 57, 52 (2005).

    Article  Google Scholar 

  16. M. Iijima and H. Kamiya, KONA Powder Part. J. 27, 119 (2009).

    CAS  Google Scholar 

  17. L. Guerrini, R. A. Alvarez-Puebla, and N. Pazos-Perez, Materials 11, 1154 (2018).

    Article  PubMed Central  Google Scholar 

  18. H. Heinz, C. Pramanik, O. Heinz, Y. Ding, R. K. Mishra, D. Marchon, R. J. Flatt, I. Estrela-Lopis, J. Llop, S. Moya, and R. F. Ziolo, Surf. Sci. Rep. 72, 1 (2017).

    Article  CAS  Google Scholar 

  19. E. Yavuz, R. Erdem, E. Küçüksayan, E. Akarsu, and M. Akarsu, Fibers Polym. 22, 1274 (2021).

    Article  CAS  Google Scholar 

  20. N. Wang, X. Wu, and C. S. Liu, Polymers 11, 979 (2019).

    Article  PubMed Central  Google Scholar 

  21. C. J. T. Landry, B. K. Coltrain, and B. K. Brady, Polymer 33, 1486 (1992).

    Article  CAS  Google Scholar 

  22. C. Li, J. Wu, J. Zhao, D. Zhao, and Q. Fan, Eur. Polym. J. 40, 1807 (2004).

    Article  CAS  Google Scholar 

  23. Y.-H. Hu, C.-Y. Chen, and C.-C. Wang, Polym. Degrad. Stab. 84, 545 (2004).

    Article  CAS  Google Scholar 

  24. M. Salami-Kalajahi, V. Haddadi-Asl, S. Rahimi-Razin, F. Behboodi-Sadabad, H. Roghani-Mamaqani, and M. Najafi, Int. J. Polym. Mater. 62, 336 (2013).

    Article  CAS  Google Scholar 

  25. W. Stöber, A. Fink, and E. Bohn, J. Colloid Interface Sci. 26, 62 (1968).

    Article  Google Scholar 

  26. Y. Lin, L. Liu, D. Zhang, Y. Liu, A. Guan, G. Wu, Soft Matter 12, 8542 (2016).

    Article  CAS  PubMed  Google Scholar 

  27. Y. Yang and Y. Dan, Colloid Polym. Sci. 281, 794 (2003).

    Article  CAS  Google Scholar 

  28. M. Chen, L. Wu, S. Zhou, and B. You, Macromolecules 37, 9613 (2004).

    Article  CAS  Google Scholar 

  29. R. Y. Hong, H. P. Fu, Y. J. Zhang, L. Liu, J. Wang, H. Z. Li, and Y. Zheng, J. Appl. Polym. Sci. 105, 2176 (2007).

    Article  CAS  Google Scholar 

  30. J.-M. Yeh, C.-J. Weng, W.-J. Liao, and Y.-W. Mau, Surf. Coat. Technol. 201, 1788 (2006).

    Article  CAS  Google Scholar 

  31. Rd. S. Leão, S. L. D. de Moraes, K. A. S. Aquino, C. P. Isolan, B. Gd. S. Casado, and M. A. J. R. Montes, Int. J. Dent. 2018, 5743840 (2018).

  32. A. R. Cho and S.-Y. Park, Opt. Mater. Express 5, 690 (2015).

    Article  Google Scholar 

  33. M. L. Saladino, T. E. Motaung, A. S. Luyt, A. Spinella, G. Nasillo, and E. Caponetti, Polym. Degrad. Stab. 97, 452 (2012).

    Article  Google Scholar 

  34. J. Coates, “Interpretation of Infrared Spectra, A Practical Approach,” in Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation (Wiley, New York, 2006). https://doi.org/10.1002/9780470027318.a5606

    Book  Google Scholar 

  35. P. J. Launer and B. Arkles, “Infrared Analysıs of Organosılıcon Compounds: Spectra-Structure Correlatıons,” in Silicon Compounds: Silanes and Silicones (Gelest, Inc Morrisville, PA, 2003), pp. 175‒178.

  36. B. H. Stuart, Infrared Spectroscopy: Fundamentals and Applications (John Wiley and Sons Ltd, West Sussex, England, 2004), pp.123‒129.

    Book  Google Scholar 

  37. Y. Lin, L. Liu, G. Xu, D. Zhang, A. Guan, and G. Wu, J. Phys. Chem. 119, 12956 (2015).

    CAS  Google Scholar 

  38. B. Arkles, J. R. Steinmetz, J. Zazyczny, and P. Mehta, J. Adhes. Sci. Technol. 6, 193 (1992).

    Article  CAS  Google Scholar 

  39. T. Kashiwagi, A. Inaba, J. E. Brown, K. Hatada, T. Kitayama, and E. Masuda, Macromolecules 19, 2160 (1986).

    Article  CAS  Google Scholar 

  40. J. Rychlý and J. Pavlinec, Polym. Degrad. Stab. 28, 1 (1990).

    Article  Google Scholar 

  41. S. M. Lomakin, J. E. Brown, R. S. Breese, and M. R. Nyden, Polym. Degrad. Stab. 41, 229 (1993).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Authors would like to thank to Prof. Dr. Turgay Seçkin at Chemistry Department of İnönü University for his technical support for TGA analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramazan Erdem.

Ethics declarations

The authors declared that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emre Yavuz, Erdem, R. & Akarsu, E. Enhancing Glass Transition Temperature of Poly(methylmethacrylate) by Incorporating Methacrylate-Functional Silane Grafted SiO2 Nanoparticles. Polym. Sci. Ser. B 64, 546–552 (2022). https://doi.org/10.1134/S1560090422700191

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560090422700191

Navigation