Skip to main content
Log in

Synthesis, Characterization, and Microbial Degradation Behavior of Hydrogel Based on Poly(ε-caprolactone) and Methacrylic Anhydride

  • FUNCTIONAL POLYMERS
  • Published:
Polymer Science, Series B Aims and scope Submit manuscript

Abstract

This study establishes the synthesis of a biodegradable hydrogel based on poly(ε-caprolactone) and methacrylic anhydride. The process was performed by polymerizing ε-caprolactone with methacrylic anhydride and catalyzed by the protonated heterogeneous clay maghnite-H+, followed by the thermal-radical polymerization of the resulting α,ω-bis-unsaturated PCL macromonomers. The structure and functionalization of the obtained macromonomers were confirmed by Fourier transform infrared spectroscopy, proton and carbon nuclear magnetic resonance, and UV-spectroscopy. In addition, the kinetic study of the effect of different experimental parameters (amounts of maghnite-H+, temperature, reaction time, and methacrylic anhydride content) on the polymerization process has been discussed. The swelling behavior and thermal properties of hydrogel were investigated in detail as well as the biodegradability efficiency of the produced hydrogel against the gram-positive (Bacillus subtilis) bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. K. P. Yong Qiu, Psychiatry Clin. Neurosci. 52, 145 (2001).

    Google Scholar 

  2. M. Torres-Lugo, M. García, R. Record, and N. A. Peppas, J. Controlled Release 80, 197 (2002).

    Article  CAS  Google Scholar 

  3. T. C. Guo,Z. Y. Qian, M. J. Huang, B. Kan, Y. C. Gu, C. Y. Gong, J. L. Yang, K. Wang, M. Dai, X. Y. Li, M. L. Gou, M. J. Tu, and Y. Q. Wei, J. Biomed. Mater. Res. Part A 85, 36 (2008).

    Google Scholar 

  4. C. L. Bell and N. A. Peppas, Biomaterials 17, 1203 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. K. Wang, S. Z. Fu, Y. C. Gu, X. Xu, P. W. Dong, G. Guo, X. Zhao, Y. Q. Wei, and Z. Y. Qian, Polym. Degrad. Stab. 94, 730 (2009).

    Article  CAS  Google Scholar 

  6. S. Wang, L. Lu, J. A. Gruetzmacher, B. L. Currier, and M. J. Yaszemski, Biomaterials 27, 832 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. C. B. Liu, C. Gonga, Y. Pan, Y. Zhang, J. Wang, M. Huang, Y. Wang, M.Huang, Y. Wang, K. Wang, M. Gou, M.Tu, Y. Wei, and Z. Qian,Colloids Surf., A: 302, 430 (2007).

    Article  CAS  Google Scholar 

  8. S. R. Van Tomme, G. Storm, and W. E. Hennink, Int. J. Pharm. 355, 1 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. N. S. Nikouei, N. Ghasemi, and A. Lavasanifar, Pharm. Res. 33, 358 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Y. Shen, Z. Shen, J. Shen, Y. Zhang, and K. Yao, Macromolecules 29, 3441 (1996).

    Article  CAS  Google Scholar 

  11. A. Cretu, R. Gattin, L. Brachais, and D. Barbier-Baudry, Polym. Degrad. Stab. 83, 399 (2004).

    Article  CAS  Google Scholar 

  12. S. Hermanová,R. Bálková, S. Voběrková, I. Chamradová, J. Omelková, L. Richtera, L. Mravcová, and J. Jančář, J. Appl. Polym. Sci. 127, 4726 (2013).

    Article  Google Scholar 

  13. P. Dubois, C. Jacobs, R. Jérôme, and P. Teyssté, Macromolecules 24, 2266 (1991).

    Article  CAS  Google Scholar 

  14. D. Mondal, M. Griffith, and S. S. Venkatraman, Int. J. Polym. Mater. Polym. Biomater. 65, 255 (2016).

    Article  CAS  Google Scholar 

  15. F. B. Mamba, T. Ndlovu, S. Mbizana, W. Khan, and N. P. Gule, J. Appl. Polym. Sci. 138 (9), 49903 (2021).

    Article  CAS  Google Scholar 

  16. J. L. E. Ivirico, M. S. Sánchez, R. Sabater i Serra, J. M. M. Dueñas, J. L. G. Ribelles, and M. M. Pradas, Macromol. Chem. Phys. 207, 2195 (2006).

    Article  CAS  Google Scholar 

  17. J. M. Meseguer-Dueñas, J. Más-Estellés, I. Castilla-Cortázar, J. L. Escobar Ivirico, and A. Vidaurre, J. Mater. Sci.: Mater. Med.22(1), 11 (2011).

    Google Scholar 

  18. C. L. Salgado, E. M. S. Sanchez, C. A. C. Zavaglia, and P. L. Granja, J. Biomed. Mater. Res., Part A 100, 243(2012).

    Google Scholar 

  19. L. N. Woodard and M. A. Grunlan, ACS Macro Lett. 7, 976 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Y. Yagci, O. Nuyken, and V.Graubner, “Telechelic Polymers,” in Encyclopedia of Polymer Science and Technology, Ed. by J. I. Kroschwitz, 3rd ed. (John Wiley and Sons, Inc., New York, 2004), Vol. 17, No. 3.

  21. N. G. M. Degirmenci and A. Acikses, J. Appl. Polym. Sci. 116, 2658 (2010).

    Google Scholar 

  22. C. Pröll and O. Nuyken, “Telechelic Polymers,” in Encyclopedia of Polymer Science and Technology, Ed. by K. Matyjaszewski (John Wiley and Sons, New York, 2018). https://doi.org/10.1002/0471440264.pst499.pub2

    Google Scholar 

  23. K. Ito and S. Kawaguchi, “Poly(macromonomers): Homo- and Copolymerization,” in Branched Polymers I. Advances in Polymer Science, Ed. by J. Roovers (Springer, Berlin; Heidelberg, 1999), vol. 142. https://doi.org/10.1007/3-540-68310-0_3

    Google Scholar 

  24. B. Chun-Lei, W. Xue-Mei, and W. Lian-Shi, J. Polym. Res. 16, 279 (2009).

    Article  Google Scholar 

  25. F. Ariura, M. Schappacher, R. Borsali, and A. Deffieux, React. Funct. Polym. 69, 402 (2009).

    Article  CAS  Google Scholar 

  26. T. Higashihara and R. Faust, React. Funct. Polym. 69, 429 (2009).

    Article  CAS  Google Scholar 

  27. F. Becquart, M. Taha, A. Zerroukhi, J. Kaczun, and U. Stebani, J. Polym. Sci., Part A: Polym. Chem. 42, 1618 (2004).

    Article  CAS  Google Scholar 

  28. L. Elomaa, S. Teixeira, R. Hakala, H. Korhonen, D. W. Grijpma, and J. V. Seppälä, Acta Biomater. 7, 3850 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. J. Yan, Y. Zhang, Y. Xiao, Y. Zhang, and M. Lang, React. Funct. Polym. 70, 400 (2010).

    Article  CAS  Google Scholar 

  30. A. Dzienia, P. Maksym, M. Tarnacka, I. Grudzka-Flak, S. Golba, A. Zięba, K. Kaminski, and M. Paluch, Green Chem. 19, 3618 (2017).

    Article  CAS  Google Scholar 

  31. K. Naraghi, N. Sahli, M. Belbachir, E. Franta, and P. J. Lutz, Polym. Int. 51, 912 (2002).

    Article  CAS  Google Scholar 

  32. K. Hensen, C. Mahaim, and W. F. Hölderich, Appl. Catal., A 149, 311 (1997).

  33. L. Zatta, L. P. Ramos, and F. Wypych, Appl. Clay Sci. 80–81, 236 (2013).

    Article  Google Scholar 

  34. M. B. Ahmed Yahiaoui, Aïcha Hachemaoui, J. Appl. Polym. Sci. 21, 449 (2006).

    Google Scholar 

  35. S. Benguella, A. Hachemaoui, A. Yahiaoui, and A. Dehbi, Polym. Sci., Ser. B 62, 697 (2020).

    Article  Google Scholar 

  36. A. Hachemaoui and M. Belbachir, Mater. Lett. 59, 3904 (2005).

    Article  CAS  Google Scholar 

  37. F. Hennaoui and M. Belbachir, J. Macromol. Sci., Part A: Pure Appl. Chem. 52, 992 (2015).

    Article  CAS  Google Scholar 

  38. K. Yasmina, B. Lahcene, M. Benali, and B. Mamiya, Res. J. Chem. Environ. 22 (5), 42 (2018).

    CAS  Google Scholar 

  39. ASTM International: G03 Committee, Practice for Determining Resistance of Plastics to Bacteria, 1996.

    Google Scholar 

  40. National Committee for Clinical Laboratory Standards, Performance Standards for Antimicrobial Susceptibility Testing (11th Informational Supplement, M100-S11, 2002), Vol. 1, pp. 1‒53.

  41. M. Itävaara, S. Karjomaa, and J. F. Selin, Chemosphere 46, 879 (2002).

    Article  PubMed  Google Scholar 

  42. C. Brandam, C. Castro-Martínez, M. L. Délia, F. Ramón-Portugal, and P. Strehaiano, Can. J. Microbiol. 54, 11 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. A. Harrane, R. Meghabar, and M. Belbachir, React. Funct. Polym. 66, 1696 (2006).

    Article  CAS  Google Scholar 

  44. R. Megherbi, M. Belbachir, and R. Meghabar, J. Appl. Polym. Sci. 101, 78 (2006).

    Article  CAS  Google Scholar 

  45. Y. Ghillal, A. Hachemaoui, A. M. Benkouider, A. Yahiaoui, and M. Belbachir, J. Polym Res. 21, 528 (2014).

    Article  Google Scholar 

  46. H. Mekkaoui, A. Yahiaoui, A. Hachemaoui, A. M. Benkouider, and M. Belbachir, J. Chem. Pharm. Res. 7, 933 (2015).

    CAS  Google Scholar 

  47. B. Kheira, H. Aicha, and Y. Ahmed, J. Chem. Pharm. Res. 7, 988 (2015).

    CAS  Google Scholar 

  48. S. Haoue, H. Derdar, M. Belbachir, and A. Harrane, Chem. Chem. Technol. 14, 468 (2020).

    Article  CAS  Google Scholar 

  49. F. Reguieg, N. Sahli, M. Belbachir, and P. J. Lutz, J. Appl. Polym. Sci. 99, 3147 (2006).

    Article  CAS  Google Scholar 

  50. A. Yahiaoui, M. Belbachir, and A. Hachemaoui, Int. J. Mol. Sci. 4, 548 (2003).

    Article  CAS  Google Scholar 

  51. V. Krupskaya, L. Novikova, E. Tyupina, P. Belousov, O. Dorzhieva, S. Zakusin, K. Kim, F. Roessner, E. Badetti, A. Brunelli, and L. Belchinskaya, Appl. Clay Sci. 172, 1 (2019).

    Article  CAS  Google Scholar 

  52. N. E. hoda Bouabida, A. Hachemaoui, A. Yahiaoui, H. Gherras, A. Belfedal, A. Dehbi, and A.-H. I. Mourad, Polym. Sci., Ser. B 62, 163 (2020).

  53. A. Dehbi, A.-H. I. Mourad, and K. Djakhdane, Polym. Eng. Sci. 55, 287 (2015).

    Article  CAS  Google Scholar 

  54. K. Djakhdane, A. Dehbi, A. H. I. Mourad, A. Zaoui, and P. Picuno, Plast., Rubber Compos. 45, 346 (2016).

    Article  CAS  Google Scholar 

  55. H. Gherras, A. Yahiaoui, A. Hachemaoui, A. Belfedal, A. Dehbi, and A. H. I. Mourad, J. Semicond. 39, 102001(2018).

  56. I. Tiffour, A. Dehbi, A.-H. I. Mourad, and A. Belfedal, Mater. Chem. Phys. 178, 49 (2016).

    Article  CAS  Google Scholar 

  57. S. Haoue, H. Derdar, M. Belbachir, and A. Harrane, Bull. Chem. React. Eng. Catal. 15, 221 (2020).

    Article  CAS  Google Scholar 

  58. M. Yuan, X. Li, Y. Liu, and X. Deng, Macromol. Chem. Phys. 202, 546 (2001).

    Article  CAS  Google Scholar 

  59. F. Bettahar, F. Bekkar, L. Pérez-Álvarez, M. I. Ferahi, R. Meghabar, J. L. Vilas-Vilela, and L. Ruiz-Rubio, Polymers 13, 972 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. S.-E. Park, Y.-C. Nho, Y.-M. Lim, and H.-I. Kim, J. Appl. Polym. Sci. 91, 636 (2004).

    Article  CAS  Google Scholar 

  61. T. T. Su, H. Jiang, and H. Gong, Polym.-Plast. Technol. Eng. 47, 398 (2008).

    Article  CAS  Google Scholar 

  62. O. Persenaire, M. Alexandre, P. Degée, and P. Dubois, Biomacromolecules 2, 288 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. Z. Shah, L. Krumholz, D. F. Aktas, F. Hasan, M. Khattak, and A. A. Shah, Biodegradation 24, 865 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. P. P. Vimala and L. Mathew, Procedia Technol. 24, 232 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelkader Dehbi.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fatima El Zohra Aris, Hachemaouia, A., Yahiaoui, A. et al. Synthesis, Characterization, and Microbial Degradation Behavior of Hydrogel Based on Poly(ε-caprolactone) and Methacrylic Anhydride. Polym. Sci. Ser. B 64, 417–428 (2022). https://doi.org/10.1134/S156009042270018X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S156009042270018X

Navigation