Skip to main content
Log in

In-Situ Elevated Temperature Interlaminar Shear Response and Thermal Behavior of Graphene Nanoplatelet Reinforced Kevlar/Epoxy Laminated Composites

  • COMPOSITES
  • Published:
Polymer Science, Series B Aims and scope Submit manuscript

Abstract

The interlaminar shear strength (ILSS) of the fiber-reinforced polymer (FRP) composites is critical in structural applications. At the same time, glass transition temperature Tg determines the degree of crosslinking, which depends majorly on post-curing temperature and time. In this study, the post-curing parameters (time and temperature) are initially varied to analyze their effect on the ILSS and Tg values of the Kevlar/epoxy (KE) laminated composite samples. For optimizing post-curing parameters, the temperatures selected were 70, 140, 210, and 280°C and time designated was 3, 6, and 9 hours. It was found that the KE sample post-cured at 140°C for 6 hours retained its aesthetic properties and gave an optimized result without any sign of over-curing. Further, graphene nanoplatelet (GnP) was added to KE composites (KE-GnP) in 0.25, 0.5 and 1.0 wt % of epoxy. ILSS characterization of KE-GnP was done at 25°C and in-situ elevated-temperature environments of 70, 100, and 140°C. Tg values were also evaluated. A polynomial surface was generated using the curve fitting toolbox of MATLAB from the ILSS data points obtained. Energy-dispersive X‑ray (EDX) spectroscopy was used to observe GnP dispersion uniformity in the matrix. Significant outcomes of the investigation are discussed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.

Similar content being viewed by others

REFERENCES

  1. C. Y. Yue, G. X. Sui, and H. C. Looi, Compos. Sci. Technol. 60, 421 (2000).

    Article  CAS  Google Scholar 

  2. Ting Gu, D. Zhu, and S. Lu, Polym. Sci.,Ser. A 62, 196 (2020).

    Article  Google Scholar 

  3. D. S. Cairns and P. A. Lagace, AIAA J. 27, 1590 (1989).

    Article  CAS  Google Scholar 

  4. A. Khodadadi, G. Liaghat, A. R. Bahramian, H. Ahmadi, Y. Anani, S. Asemani, and O. Razmkhah, Compos. Struct. 216, 159 (2019).

    Article  Google Scholar 

  5. S. Yang, V. B. Chalivendra, and Y. K. Kim, Compos. Struct. 168, 120 (2017).

    Article  Google Scholar 

  6. S. L. Bazhenov and G. P. Goncharuk, Polym. Sci., Ser. A 54, 803 (2012).

    Article  CAS  Google Scholar 

  7. S. L. Bazhenov and G. P. Goncharuk, Polym. Sci., Ser. A 56, 184 (2014).

    Article  CAS  Google Scholar 

  8. J. Qin, B. Guo, L. Zhang, T. Wang, G. Zhang, and X. Shi, Composites, Part B 183, 107686 (2020).

  9. K. Padmanabhan and Kishore, Mater. Sci. Eng., A 197, 113 (1995).

    Article  Google Scholar 

  10. J. C. Moller, R. J. Berry, and H. A. Foster, Polymers 12, 466 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  11. D. S. Kumar, M. J. Shukla, K. K. Mahato, D. K. Rathore, R. K. Prusty, and B. C. Ray, IOP Conf. Ser.: Mater. Sci. Eng. 75, 012012 (2015).

  12. Shubham, C. S. Yerramalli, R. K. Prusty, and B. C. Ray, in Advances in Structural Integrity, Ed. by K. Jonnalagadda, A. Alankar, N. J. Balila, and T. Bhandakkar (Springer, Singapore, 2022), pp. 103–111.

    Google Scholar 

  13. J. Meyer, Polym. Eng. Sci. 13, 462 (1973).

    Article  CAS  Google Scholar 

  14. Y. Zhang and X. Xu, Heliyon 6, e05055 (2020).

  15. J. Raghavan, Composites, Part A 40, 300 (2009).

    Article  Google Scholar 

  16. P. Silva, P. Fernandes, J. Sena-Cruz, J. Xavier, F. Castro, D. Soares, and V. Carneiro, Composites, Part B 88, 55 (2016).

    Article  CAS  Google Scholar 

  17. E. S. Zhavoronok, I. N. Senchikhin, I. E. Pchelintsev, and V. I. Roldughin, Polym. Sci., Ser. B 60, 188 (2018).

    Article  CAS  Google Scholar 

  18. M. J. Allen, V. C. Tung, and R. B. Kaner, Chem. Rev. 110, 132 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, Phys. Rev. Lett. 97, 187401 (2006).

  20. S. Chatterjee, J. W. Wang, W. S. Kuo, N. H. Tai, C. Salzmann, W. L. Li, R. Hollertz, F. A. Nüesch, and B. T. T. Chu, Chem. Phys. Lett. 531, 6 (2012).

    Article  CAS  Google Scholar 

  21. M. K. Shukla and K. Sharma, Polym. Sci., Ser. A 61, 439 (2019).

    Article  Google Scholar 

  22. M. Sabet and H. Soleiman, Polym. Sci., Ser. A 61, 922 (2019).

    Article  CAS  Google Scholar 

  23. F. Vahedi, M. Eskandarzade, K. Osouli-Bostanabad, and A. Tutunchi, Polym. Sci., Ser. A 60, 854 (2018).

    Article  CAS  Google Scholar 

  24. A. Jena, Shubham, R. K. Prusty, and B. C. Ray, Mater. Today: Proc. 33, 5184 (2020).

    CAS  Google Scholar 

  25. C. Lee, X. Wei, J. W. Kysar, and J. Hone, Science 321, 385 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, Nano Lett. 8, 902 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. V. C. Tung, M. J. Allen, Y. Yang, and R. B. Kaner, Nat. Nanotechnol. 4, 25 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. S. Chatterjee, F. Nafezarefi, N. H. Tai, L. Schlagenhauf, F. A. Nüesch, and B. T. T. Chu, Carbon 50, 5380 (2012).

    Article  CAS  Google Scholar 

  29. A. Jiménez-Suárez and S. G. Prolongo, Appl. Sci. 10, 1753 (2020).

    Article  Google Scholar 

  30. A. Kausar, Z. Anwar, and B. Muhammad, Polym. -Plast. Technol. Eng. 55, 1192 (2016).

    Article  CAS  Google Scholar 

  31. H. M. Chong, S. J. Hinder, and A. C. Taylor, J. Mater. Sci. 51, 8764 (2016).

    Article  CAS  Google Scholar 

  32. J. A. King, D. R. Klimek, I. Miskioglu, and G. M. Odegard, J. Appl. Polym. Sci. 128, 4217 (2013).

    Article  CAS  Google Scholar 

  33. F. Wang, L. T. Drzal, Y. Qin, and Z. Huang, J. Mater. Sci. 50, 1082 (2015).

    Article  CAS  Google Scholar 

  34. S. G. Prolongo, A. Jimenez-Suarez, R. Moriche, and A. Ureña, Compos. Sci. Technol. 86, 185 (2013).

    Article  CAS  Google Scholar 

  35. J. Du and H.-M. Cheng, Macromol. Chem. Phys. 213, 1060 (2012).

    Article  CAS  Google Scholar 

  36. D. K. Rathore, R. K. Prusty, D. S. Kumar, and B. C. Ray, Composites, Part A 84, 364 (2016).

    Article  CAS  Google Scholar 

  37. X. Wang, W. Xing, P. Zhang, L. Song, H. Yang, and Y. Hu, Compos. Sci. Technol. 72, 737 (2012).

    Article  CAS  Google Scholar 

  38. G. Höhne, W. F. Hemminger, and H.-J. Flammersheim, Differential Scanning Calorimetry (Springer Science and Business Media, Berlin; Heidelberg, 2013).

    Google Scholar 

  39. S. Sethi, D. K. Rathore, and B. C. Ray, Mater. Des. 65, 617 (2015).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Mr. Rajesh Patnaik’s technical assistance is much appreciated.

Funding

The authors are grateful to the National Institute of Technology Rourkela and the Science and Engineering Research Board of India (ECR/2018/001241) for their monetary and infrastructural assistance in completing this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Kumar Prusty.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shubham, Prusty, R.K. & Ray, B.C. In-Situ Elevated Temperature Interlaminar Shear Response and Thermal Behavior of Graphene Nanoplatelet Reinforced Kevlar/Epoxy Laminated Composites. Polym. Sci. Ser. B 64, 553–566 (2022). https://doi.org/10.1134/S1560090422700166

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560090422700166

Navigation