Skip to main content
Log in

Effect of Processing Temperature on the Thermal and Mechanical Properties of BPDA–PDA

  • COMPOSITES
  • Published:
Polymer Science, Series B Aims and scope Submit manuscript

Abstract

High heat resistant and stable dimensional PI films have been widely used in organic light emitting diode industry, therefore the comprehensive performance should be enhanced. The PI films of low CTE and high heat resistance were prepared with 3,3′,4,4′-biphenyltetracarboxylic dianhydride (BPDA) and p-phenylenediamine (PDA) under different processing conditions. WAXD and FTIR were performed to characterize the microstructure of the films. DMA and TMA were conducted to investigate the mechanical and thermal properties of the films. The results showed that the density of the films increased and water absorption rate decreased with fabrication temperature as a result of the smectic structure. The smectic structure of the film attributed to the oriented polymer chains was observed in the DMA curves peaked at 470°C. The film would shrink at round the glass transition temperature as indicated by the TMA curves when it was prepared at relatively lower fabrication temperature, resulting in a larger CTE value compared with other prepared at high fabrication temperature. The 1% weight loss temperature increased with the fabrication temperature for the smectic structure. The tensile strength and elongation at break of the film increased with smectic density. The heat resistance and mechanical performance of bioriented films were the best among all the samples as the PI chains were stretched during the imidization process when all the edges of the film were fixed. The results obtained in this paper could offer practical and valuable references to optimization of processing parameters for the preparation of high performance PI films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. J. H. Kim, M. C. Choi, H. Kim, Y. Kim, J. H. Chang, M. Han, I. Kim, and C. S. Ha, J. Nanosci. Nanotechnol. 10, 388 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. M. Auch, O. K. Soo, G. Ewald, and C. Soo-Jin, Thin Solid Films 417, 47 (2002).

    Article  CAS  Google Scholar 

  3. H. Lim, W. J. Cho, C. S. Ha, S. Ando, Y. K. Kim, C. H. Park, and K. Lee, Adv. Mater. 14, 1275 (2002).

    Article  CAS  Google Scholar 

  4. S. Han, Y. Li, F. Hao, H. Zhou, S. Qi, G. Tian, and D. Wu, Eur. Polym. J. 143, 110206 (2021).

  5. C. Huang, S. Wang, H. Zhang, T. Li, S. Chen, C. Lai, and H. Hou, Eur. Polym. J. 42, 1099 (2006).

    Article  CAS  Google Scholar 

  6. W. J. Bae, M. K. Kovalev, F. Kalinina, M. Kim, and C. Cho, Polymer 105, 124 (2016).

    Article  CAS  Google Scholar 

  7. M. Hasegawa, Y. Hoshino, N. Katsura, and J. Ishii, Polymer 111, 91 (2017).

    Article  CAS  Google Scholar 

  8. J. Seo, K. Cho, and H. Han, Polym. Degrad. Stab. 74, 133 (2001).

    Article  CAS  Google Scholar 

  9. H. Wang, J. T. Ryu, C. Cao, and Y. Kwon, J. Nanosci. Nanotechnol. 8, 4846 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. J. S. Park, T. W. Kim, D. Stryakhilev, J. S. Lee, S. G. An, Y. S. Pyo, D. B. Lee, Y. G. Mo, D. U. Jin, and H. K. Chung, Appl. Phys. Lett. 95, 81462 (2009).

    Google Scholar 

  11. T. Miwa, Y. Okabe, and M. Ishida, Polymers 38, 4945 (1997).

    Article  CAS  Google Scholar 

  12. W. Yang, F. Liu, J. Zhang, E. Zhang, X. Qiu, and X. Ji, Eur. Polym. J. 96, 429 (2017).

    Article  CAS  Google Scholar 

  13. D. J. Liaw, K. L. Wang, Y. C. Huang, K. R. Lee, and C. S. Ha, Prog. Polym. Sci. 37, 907 (2012).

    Article  CAS  Google Scholar 

  14. Y. Lu, and M. Zhan, J. Polym. Sci., Part B: Polym. Phys. 43, 2154 (2005).

    Article  CAS  Google Scholar 

  15. M. B. Saeed and M. S. Zhan, Eur. Polym. J. 42, 1844 (2006).

    Article  CAS  Google Scholar 

  16. J. Ishii, N. Shimizu, N. Ishihara, Y. Ikeda, N. Sensui, T. Matano, and M. Hasegawa, Eur. Polym. J. 46, 69 (2010).

    Article  CAS  Google Scholar 

  17. Y. Shoji, R. Ishige, T. Higashihara, J. Watanabe, and M. Ueda, Macromolecules 43, 703 (2010).

    Google Scholar 

Download references

Funding

This work was sponsored by national natural science foundation of China under grant 51973056 and 52173034, Hunan provincial project of science and technology under grant 2020NK2035, 2021JJ50031 and 2021JJ50009, scientific research projects of Hunan provincial department of education under grant 18A258 and 18C0524, the science and technology innovation program of Hunan province under grant 2021RC4065.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeng Guangsheng.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng Jun, Jin, W., Jun, Y. et al. Effect of Processing Temperature on the Thermal and Mechanical Properties of BPDA–PDA. Polym. Sci. Ser. B 64, 518–525 (2022). https://doi.org/10.1134/S1560090422700105

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560090422700105

Navigation