Skip to main content
Log in

Synthesis, Characterization and Emulsifying Property of the Polyamide Elastomer with Favorable Self-healing Performance

  • FUNCTIONAL POLYMERS
  • Published:
Polymer Science, Series B Aims and scope Submit manuscript

Abstract

Polyamide based self-healing elastomer was obtained through a one-step reaction of dicarboxylic acid and triethylenetetramine. The polyamide elastomer characterized by thermogravimetric analysis indicated a favorable thermal degradation temperature at around 400°C. Differential scanning calorimetry analysis demonstrated that the glass-rubber-viscous flow transition occurred during the heating process from ‒30 to 200°C. The reversible hydrogen bonding interactions, manifested by the temperature-dependent Fourier transform infrared spectroscopy, contributed to the self-healing characteristics of the polyamide elastomer. Time-dependent as well as temperature-dependent self-healing efficiency was quantitatively characterized by tensile tests respectively. The recovered tensile stress at break of the tested specimen could reach more than 90% at 24 h of contact. In addition, the healing behavior was also promoted by the temperature-driven molecular motions since higher self-healing efficiency was gained during the heating process. The polyamide elastomer was feasible to be emulsified by alkyl amine oxide at proper pH condition. The self-healing property of the prepared emulsion was demonstrated by the spontaneous agglomeration of the treated quartz grains, indicated that the polyamide elastomer could be utilized in the aqueous state rather than be constricted to the bulk phase, which greatly expanded the operating conditions of the self-healing elastomer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. Z. W. Huang, R. S. Gurney, T. Wang, and D. Liu, J. Colloid Interface Sci. 527, 107 (2018).

    Article  CAS  Google Scholar 

  2. E. Manfredi, A. Cohades, I. Richard, and V. Michaud, Smart Mater. Struct. 24, 015019 (2015).

    Article  CAS  Google Scholar 

  3. A. L. Volynskii and N. F. Bakeev, Polym. Sci., Ser. A 51, 1096 (2009).

    Article  Google Scholar 

  4. T. E. Sadrabadi, S. R. Allahkaram, T. Staab, and N. Towhidi, Polym. Sci., Ser. B 59, 281 (2017).

    Article  CAS  Google Scholar 

  5. S. M. Mirabedini, I. Dutil, L. Gauquelin, N. Yan, and R. R. Farnood, Prog. Org. Coat. 85, 168 (2015).

    Article  CAS  Google Scholar 

  6. X. M. Xing, L. W. Li, T. Wang, Y. W. Ding, G. M. Liu, and G. Z. Zhang, J. Mater. Chem. A 2, 11049 (2014).

    Article  CAS  Google Scholar 

  7. I. Jeon, J. X Cui, W. R. K. Illeperuma, J., Aizenberg, and J. J. Vlassak, Adv. Mater. 28, 4678 (2016).

    Article  CAS  Google Scholar 

  8. A. M. Peterson, H. Kotthapalli, and M. Aflal M. Rahmathullah, Compos. Sci. Technol. 72, 330 (2012).

    Article  CAS  Google Scholar 

  9. B. Korkmaz, S. Agtas, B. Sütay, E. Yildirim; I. Yilgor; M. Yurtsever, B. F. Senkal, and Y. Gursel, J. Mol. Liq. 317, 114001 (2020).

    Article  CAS  Google Scholar 

  10. Q. Li, Siddaramaiah, N. H. Kim, D. Hui, and J. H. Lee, Composites, Part B 55, 79 (2013).

    Article  CAS  Google Scholar 

  11. D. Y. Zhu, M. Z. Rong, and M. Q. Zhang, Polymer 54, 4227 (2013).

    Article  CAS  Google Scholar 

  12. F. H. Kong, W. C. Xu, X. L. Zhang, X. Wang, Y. Zhang, and J. L. Wu, J. Mater. Sci. 53, 12850 (2018).

    Article  CAS  Google Scholar 

  13. I. L. Hia, W. H. Lam, S. P. Chai, E. S. Chan, and P. Pasbakhsh, Mater. Chem. Phys. 215, 69 (2018).

    Article  CAS  Google Scholar 

  14. L. K. Grunenfelder, N. Suksangpanya, C. Salinas, G. Milliron, N. Yaraghi, S. Herrera, K. Evans-Lutterodt, S. R. Nutt, P. Zavattieri, and D. Kisailus, Acta Biomater. 10, 3997 (2014).

    Article  CAS  Google Scholar 

  15. A. M. Coppola, P. R. Thakre, N. R. Sottos, and S. R. White, Compos. Part A 59, 9 (2014).

    Article  CAS  Google Scholar 

  16. G. Scheltjens, M. M. Diaz, J. Brancart, G. Van Assche, and B. Van Mele, React. Funct. Polym. 73, 413 (2013).

    Article  CAS  Google Scholar 

  17. J. J. Cash, T. Kubo, A. P. Bapat, and B. S. Sumerlin, Macromolecules 48, 2098 (2015).

    Article  CAS  Google Scholar 

  18. L. B. Feng, Z. Y. Yu, Y. H. Bian, J. S. Lu, X. T. Shi, and C. S. Chai, Polymer, 124, 48 (2017).

    Article  CAS  Google Scholar 

  19. X. Wang, K. Zhao, X. Huang, X. Y. Ma, and Y. Y. Wei, High Perform. Polym. 31, 51 (2019).

    Article  CAS  Google Scholar 

  20. K. Chang, H. Jia, and S. Y. Gu, Eur. Polym. J. 112, 822 (2019).

    Article  CAS  Google Scholar 

  21. Y. J. Kim, P. H. Huh, and B. K. Kim, J. Polym. Sci., Part B: Polym. Phys. 53, 468 (2015).

    Article  CAS  Google Scholar 

  22. S. Burattini, B. W. Greenland, D. H. Merino, W. G. Weng, J. Seppala, H. M. Colquhoun, W. Hayes, M. E. Mackay, I. W. Hamley, and S. J. Rowan, J. Am. Chem. Soc. 132, 12051 (2010).

    Article  CAS  Google Scholar 

  23. M. Suckow, A. Mordvinkin, M. Roy, N. K. Singha, G. Heinrich, B. Voit, K. Saalwachter, and F. Bohme, Macromolecules 51, 468 (2018).

    Article  CAS  Google Scholar 

  24. S. Bode, L. Zedler, F. H. Schacher, B. Dietzek, M. Schmitt, J. Popp, M. D. Hager, and U. S. Schubert, Adv. Mater. 25, 1634 (2013).

    Article  CAS  Google Scholar 

  25. Q. Zhang, T. Li, A. B. Duan, S. Y. Dong, W. X. Zhao, and P. J. Stang, J. Am. Chem. Soc. 141, 8058 (2019).

    Article  CAS  Google Scholar 

  26. F. Herbst, D. Döhler, P. Michael, and W. H. Binder, Macromol. Rapid Commun. 34, 203 (2013).

    Article  CAS  Google Scholar 

  27. A. Sikora and A. Iwan, High Perform. Polym. 24, 218 (2012).

    Article  CAS  Google Scholar 

  28. J. Hou, M. S. Liu, H. C. Zhang, Y. L. Song, X. C. Jiang, A. B. Yu, L. Jiang, and B. Su, J. Mater. Chem. A 5, 13138 (2017).

    Article  CAS  Google Scholar 

  29. C. X. Chen, N. Duan, S. W. Chen, Z. H. Guo, J. S. Hu, J. Guo, Z. P. Chen, and L. Q. Yang, J. Mol. Liq. 319, 114134 (2020).

    Article  CAS  Google Scholar 

  30. D. Montarnal, P. Cordier, C. Soulie-Ziakovic, F. Tournilhac, and L. Leibler, J. Polym. Sci., Part A: Polym. Chem. 46, 7925 (2008).

    Article  CAS  Google Scholar 

  31. Y. L. Chen, A. M. Kushner, G. A. Williams, and Z. B. Guan, Nat. Chem. 4, 467 (2012).

    Article  CAS  Google Scholar 

  32. L. Yang, Y. L. Lin, L. S. Wang, and A. Q. Zhang, Polym. Chem. 5, 153 (2014).

    Article  CAS  Google Scholar 

  33. M. M. Sander and C. A. Ferreira, Synth. Met. 243, 58 (2018).

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the [National Key R and D Program of China] (Grant number [2018YFA0702400]), the [Major Scientific and Technological Projects of CNPC] (Grant number [ZD2019-183-007]) and the [Fundamental Research Funds for the Central Universities] (Grant numbers [no. 18CX06017A]).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. C. Zhang.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J.D., Zhang, G.C., Ge, J.J. et al. Synthesis, Characterization and Emulsifying Property of the Polyamide Elastomer with Favorable Self-healing Performance. Polym. Sci. Ser. B 63, 764–772 (2021). https://doi.org/10.1134/S1560090421060142

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560090421060142

Navigation