Skip to main content
Log in

Temperature-Dependent Studies on Electrical Properties of ZnCl2 Doped Polyaniline

  • COMPOSITES
  • Published:
Polymer Science, Series B Aims and scope Submit manuscript

Abstract

Polyaniline (PANI) and PANI/ZnCl2 composites were synthesized by chemical method and characterized by FTIR and SEM to confirm the formation of the composite. DC Current–Voltage and temperature-dependent electrical properties have been studied to explore the conduction mechanism. FTIR spectra of PANI showed all standard peaks and PANI/ZnCl2 sample showed peaks with a slight shift in wavelength position. SEM image of pure PANI illustrated as a cauliflower-like structure of around 20 μm whereas PANI/ZnCl2 confirms the encapsulation of ZnCl2 particles in the PANI matrix. The electrical conductivity of both the samples decreased concerning a decrease in temperature. Activation energy for both PANI (0.52 eV) and PANI/ZnCl2 (0.38 eV) composites was also calculated. Therefore, it is indicated that the presence of ZnCl2 in the PANI matrix reduces the activation energy. Hence, ZnCl2 doped PANI is best suitable for semiconductor device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. J. Wu, Y. Sun, W. B. Pei, L. Huang, W. Xu, and Q. Zhang, Synth. Met. 196, 173 (2014).

    Article  CAS  Google Scholar 

  2. G. L. Schulz and S. Ludwigs, Adv. Funct. Mater. 27, 1603083 (2017).

    Article  Google Scholar 

  3. C. Dingler, K. Dirnberger, and S. Ludwigs, Macromol. Rapid Commun. 40, 1800601 (2019).

    Article  Google Scholar 

  4. Y. Wu, Y. Liu, T. Emrick, and T. P. Russell, Prog. Polym. Sci. 103, 101222 (2020).

    Article  CAS  Google Scholar 

  5. I. Erukhimovich and M. O. de la Cruz, J. Polym. Sci., Part B: Polym. Phys. 45, 3003, (2007).

    Article  CAS  Google Scholar 

  6. S. J. Tang, A.-T. Wang, S.-Y. Lin, K.-Y. Huang, C.‑C. Yang, J.-M. Yeh, and K.-C. Chiu, Polym. J. 43, 667 (2011).

    Article  CAS  Google Scholar 

  7. K. G. Neoh, K. L. Tan, T. C. Tan, and E. T. Kang, J. Macromol. Sci., Part A: Pure Appl. Chem. 27, 347 (1990).

    Google Scholar 

  8. R. Karthikeyan, R. Sridhar, and R. Suresh, Int. J. Appl. Eng. Res. 13, 149 (2018).

    Google Scholar 

  9. S. Kalyane, Ind. J. Appl. Res. 3 (47), 341 (2013).

    Article  Google Scholar 

  10. I. S. Ashwini, J. Pattar, P. Anjaneyulu, D. P. Babu, R. Sreekanth, S. R. Manohara, and M. Nagaraja, Synth. Met. 270, 116588 (2020).

    Article  CAS  Google Scholar 

  11. M. Ajmal, M. U. Islam, and A. Ali, J. Supercond. Novel Magn. 31, 1375 (2018).

    Article  CAS  Google Scholar 

  12. H. C. Pant, M. K. Patra, S. C. Negi, A. Bhatia, S. R. Vadera, and N. Kumar, Bull. Mater. Sci. 29, 379 (2006).

    Article  CAS  Google Scholar 

  13. B. C. Kim, B. T. N. Ngoc, K. S. Yang, M. Kojima, Y.  A. Kim, Y.  J. Kim, M. Endo, and S.  C. Yang, Adv. Mater. 19, 2341 (2007).

    Article  CAS  Google Scholar 

  14. S. A. Awad and E. M Khalaf, J. Thermoplast. Comp. Mater. 1, 69 (2020).

    Google Scholar 

  15. J. Stezskal and R. G. Gilbert, Pure Appl. Chem. 74, 857 (2002).

    Article  Google Scholar 

  16. Z. Zakaria, N. F. A. Halim, M. H. V. Schleusingen, A. K. M. S. Islam, U. Hashim, and M. N. Ahmad, J. Nanomater. 2015, 218204 (2015).

    Article  Google Scholar 

  17. M. Trchová and J. Stejskal, Pure Appl. Chem. 83, 1803 (2011).

    Article  Google Scholar 

  18. M. G. MacDiarmid, W. E. Jones, I. D. Norris, J. Gao, A. T. Johnson, N. J. Pinto Jr., J. Hone, B. Han, F. K. Ko, H. Okuzaki, and M. Llaguna, Synth. Met. 119, 27 (2001).

    Article  CAS  Google Scholar 

  19. S. Vuillard, G. Louarn, and S. Lefrant, Phys. Rev. B: Condens. Matter Mater. Phys. 50, 496 (1994).

    Google Scholar 

  20. Z. Ping, J. Chem. Soc., Faraday Trans. 92, 3063 (2000).

    Article  Google Scholar 

  21. O. P. Dimitriev, Polym. Bull. 50, 83 (2003).

    Article  CAS  Google Scholar 

  22. J. Anand, P. S. Rao, S. Palaniappan, and D. N. Sathyanarayana, Synth. Met. 95, 57 (1998).

    Article  CAS  Google Scholar 

  23. S. Shayegh, H. A. Bioki, M. B. Zarandi, N. K. Samani, and A. Rahnamanic, Polym. Sci., Ser. B 59, 616 (2017).

    Article  CAS  Google Scholar 

  24. H. Liu, A. Pourret, and P. Guyot-sionnest, ACS Nano 4, 5211 (2010).

    Article  CAS  Google Scholar 

  25. S. H. Carr, D. K. Davies, and P. Fischer, Electrical of Polymers Properties (Academic Press, Orlando, FL, 1982).

    Google Scholar 

  26. V. Luthra and A. Mansingh, Curr. Appl. Phys. 3, 219 (2003).

    Article  Google Scholar 

  27. E. Riande and R. Diaz-Calleja, Electrical Properties of Polymers (Marcel Dekker, New York, 2004).

    Book  Google Scholar 

  28. C. O. Yoon, M. Reghu, D. Moses, A. J. Heeger, Y. Cao, T.-A. Chen, X. Wu, and R. D. Rieke, Synth. Met. 75 (95), 229 (1995).

    Article  CAS  Google Scholar 

  29. C. Yoon, M. Reghu, D. Mosesa, Y. Caob, and A. J. Heegerapb, Synth. Met. 69, 4 (1995).

    Google Scholar 

  30. J. Morita, T. Goto, S. Kanehashi, and T. Shimomura, Polymers 12, 2658 (2020).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayadev Pattar.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagaraja, M., Geetha, T., Pattar, J. et al. Temperature-Dependent Studies on Electrical Properties of ZnCl2 Doped Polyaniline. Polym. Sci. Ser. B 63, 614–619 (2021). https://doi.org/10.1134/S1560090421050080

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560090421050080

Navigation