Skip to main content
Log in

Electrical, Structural, and Thermo-Electric Power Studies of Polypyrrole-MnO2 Composites

  • COMPOSITES
  • Published:
Polymer Science, Series B Aims and scope Submit manuscript

Abstract

In situ polymerization of pyrrole was carried out with manganese dioxide, in the presence of an oxidizing agent ammonium persulfate, in order to synthesize polypyrrole/manganese dioxide composites, by the chemical oxidation method. The polypyrrole/manganese dioxide composites were synthesized with different concentrations viz., 10 and 15 wt % of manganese dioxide in pyrrole. SEM and XRD analyses were done on polypyrrole and polypyrrole/manganese dioxide composites. The results of Seebeck coefficient, thermo-electric power factor, A.C. conductivity and dielectric properties values for the polypyrrole/manganese dioxide composites have demonstrated a strong dependence on the weight percent of manganese dioxide in the pure polypyrrole. The results of Seebeck coefficient have indicated a linear relationship between Seebeck coefficient, temperature gradient and the content of manganese dioxide in the polypyrrole as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. H. Shirakawa, E. Louis, A. G. MacDiarmid, C. K. Chiang, and A. J. Heeger, J. Chem. 16, 578 (1977).

    Google Scholar 

  2. J. Heeger, Angew. Chem., Int. Ed. 40, 2591 (2001).

    Article  CAS  Google Scholar 

  3. A. K. Mishra, J. At., Mol., Condens. Matter Nano Phys. 5, 159 (2018).

    Google Scholar 

  4. T. V. Vernitskaya and O. N. Efimov, Russ. Chem. Rev. 66, 443 (1997).

    Article  Google Scholar 

  5. A. Yusuf, M. A. Salah, S. A. Enezi, and G. Abraham, Int. J. Polym. Sci. 22, 1 (2018).

    Article  Google Scholar 

  6. S. P. Armes, Synth. Met. 20, 365 (1987).

    Article  CAS  Google Scholar 

  7. C. D. Chouvy and T. T. M. Tran, Electrochem. Commun. 10, 947 (2008).

    Article  Google Scholar 

  8. A. B. Slimane, M. M. Chehimi, and M. J. Vaulay, Colloid Polym. Sci. 282, 314 (2004).

    Article  Google Scholar 

  9. W. J. Bae, K. H. Kim, and W. H. Jo, Macromolecules 38, 1044 (2005).

    Article  CAS  Google Scholar 

  10. H. C. Kang and K. E. Geckeler, Polymer 41, 6931 (2000).

    Article  CAS  Google Scholar 

  11. K. Naoi, Y. Oura, M. Maeda, and S. Nakamura, J. Electrochem. Soc. 142, 417 (1995).

    Article  CAS  Google Scholar 

  12. T. O. Magu, A. U. Agobi, L. Hitler, and P. M. Dass, J. Chem. Rev. 1, 19 (2019).

    Google Scholar 

  13. X. Feng, Z. Sun, W. Hou, and J. J. Zhu, Nanotechnology 18, 1 (2007).

    Google Scholar 

  14. J. Jiang, L. Ai, and L. Li, J. Phys. Chem. B 113, 1376 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. J. Jiang and L. H. Ai, J. Mater. Sci. 21, 687 (2010).

    CAS  Google Scholar 

  16. H. Li, Y. Jia, S. Luan, Q. Xiang, C. C. Han, G. Mamtin, Y. Han, and L. An, Polym. Compos. 29, 649 (2008).

    Article  Google Scholar 

  17. A. Bhattacharaya, D. C. Mukherjee, J. M. Gohil, Y. Kumar, and S. Kundu, Desalination 225, 366 (2008).

    Article  Google Scholar 

  18. A. Maity and M. Biswas, J. Appl. Polym. Sci. 90, 1058 (2003).

    Article  CAS  Google Scholar 

  19. T. K. Vishnuvardhan, V. R. Kulkarni, C. Basavaraja, and S. C. Raghavendra, Bull. Mater. Res. 29, 77 (2006).

    CAS  Google Scholar 

  20. S. P. Armes, S. Gottesfeld, J. G. Beery, F. Garzon, and S. F. Agnew, Polymer 32, 2325 (1991).

    Article  CAS  Google Scholar 

  21. S. Maeda and S. P. Armes, Chem. Mater. 7, 171 (1995).

    Article  CAS  Google Scholar 

  22. L. Han, P. Tang, and L, Zhang, Nano Energy 7, 42 (2001).

    Article  Google Scholar 

  23. A. Bhattacharya, K. M. Ganguly, A. De, and S. Sarkar, Mater. Res. Bull. 31, 527 (1996).

    Article  CAS  Google Scholar 

  24. S. Chen, J. Zhu, X. Wu, Q. Han, X. Wang, ACS Nano 4, 2822 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. D. D. Yan, Y. Liu, Z. Wu, R. Zhou, and J. Wang, Adv. Mater. Res. 800, 393 (2013).

    Article  Google Scholar 

  26. B. Somboonsub, S. Srisuwan, M. A. Invernale, S. Thongyai, P. Praserthdam, D. A. Scola, and G. A. Sotzing, Polymer 51, 4472 (2010).

    Article  CAS  Google Scholar 

  27. J. Zhang, Y. Shi, Y. Ding, W. Zhang, G. Yu, Nano Lett. 16, 7276 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. L. Han, P. Tang, and L. Zhang, Nano Energy 7, 42 (2014).

    Article  CAS  Google Scholar 

  29. J. Li, T. Que, and J. Haung, Mater. Res. Bull. 48, 747 (2013).

    Article  CAS  Google Scholar 

  30. M. Culebras, C. M. Gomez, and A. Cantarero, Materials 7, 6701 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Y. Du, S. Z. Shen, K. Cai, and P. S. Casey, Prog. Polym. Sci. 37, 820 (2012).

    Article  CAS  Google Scholar 

  32. S. Iwanaga, E. S. Toberer, A. LaLonde, and G. J. Snyder, Rev. Sci. Instrum. 82, 1 (2011).

    Article  Google Scholar 

  33. A. Noori, S. Masoumi and N. Hashemi, J. Phys.: Conf. Ser. 939, 1 (2017).

    Google Scholar 

  34. C. S. Kim, H. M. Yang, J. Lee, ACS Energy Lett. 3, 501 (2018).

    Article  CAS  Google Scholar 

  35. J. Stulik, R. Polansky, A. Hamacek, S. Nespurek, P. Slepicka, Z. Kolska, and V. Svorcik, Sens. Actuators, B 275, 359 (2018).

    Article  CAS  Google Scholar 

  36. J. P. Carmo, L. M. Goncalves, and J. H. Correia, IEEE Trans. Ind. Electron. 57, 861 (2010).

    Article  Google Scholar 

  37. F. Liang, L. Zhiwei, and Y. Liu, J. Mater. Sci.: Mater. Electron. 28, 14 (2017).

    Google Scholar 

  38. X. Zhao, T. Tian, M. Guo, X. Liu, and X. Liu, J. Chem. Technol. Biotechnol. 95 163 (2020).

    Article  CAS  Google Scholar 

  39. B. V. Chaluvaraju, K. G. Sangappa, and M. V. Murugendrappa, J Mater Sci: Mater. Electron. 27, 1044 (2016).

    CAS  Google Scholar 

  40. L. Liang, G. Chen, and C. Y. Guo, Mater. Chem. Front. 1, 380 (2017).

    Article  CAS  Google Scholar 

  41. J. Y. Ouyang and Y. F. Li, Polymer 38, 3997 (1997).

    Article  CAS  Google Scholar 

  42. H. Chitte, N. Bhat, M. Gore, and G. Shind, Mater. Sci. Appl. 2, 1491 (2011).

    CAS  Google Scholar 

  43. J. C. Maxwell, Electricity and Magnetism (Oxford, Clarendon, 1892).

    Google Scholar 

  44. K. W. Wagner, Arch Elektrotech. (Berlin) 2, 371 (1914).

    Article  Google Scholar 

  45. C. Basavaraja and Y. M. Choi, Bull. Korean Chem. Soc. 28, 7 (2007).

    Google Scholar 

  46. S. Cetinar and H. Karakas, Synth. Met. 160, 1189 (2010).

    Article  Google Scholar 

  47. A. K. Joncher, Thin Films 11, 232 (1980).

    Google Scholar 

  48. A. Kumar and S. Sarmah, Phys. Status Solidi A 208, 2203 (2011).

    Article  CAS  Google Scholar 

  49. F. J. Blatt, P. A. Schroeder, C. L. Foiles, and D. Greig, Thermoelectric Power of Metals (Plenum, New York, 1976).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ariba Bibi.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ariba Bibi, Abdul Shakoor Electrical, Structural, and Thermo-Electric Power Studies of Polypyrrole-MnO2 Composites. Polym. Sci. Ser. B 63, 606–613 (2021). https://doi.org/10.1134/S1560090421050018

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560090421050018

Navigation