Skip to main content

Features of Thermo-Oxidative Degradation of Epoxy Oligomer-Based Compositions with Thermoplastic Fillers


The effect of fillers, polysulfone and polyetherimide, on the mechanism and kinetics of the thermo-oxidative degradation of a composition based on an epoxy oligomer cured with 4,4'-diaminodiphenyl sulfone which proceeds under heating in the nonisothermal regime is studied. A relationship is revealed between the structure of the composition and the mechanism and kinetic parameters of the process, on one hand, and the chemical nature of the filler, on the other hand. Mechanistic and kinetic features of the nonisothermal degradation of the epoxyamine composition are ascertained by the thermoanalytical method using differential scanning calorimetry. The kinetic parameters of the process are assessed by an analysis of thermokinetic curves in terms of thermokinetic models and the examination of oxidation products. Depending on the filler nature and composition structure, reactions involving bonds of interjunction chains and junctions of the network of the epoxy polymer as well as radical reactions of the active centers of the filler occur in the polymer during thermal oxidation. An increase in the network density and the localization of the filler determine the contribution of the diffusion factor, decrease the rate of thermo-oxidative degradation of interjunction chains, and increase the rate of breakdown of network junctions.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.


  1. 1

    L. Matĕjka, O. Dukh, and J. Kolařík, Polymer 41, 1449 (2000).

    Article  Google Scholar 

  2. 2

    S. Sun, P. Sun, and D. Liu, Eur. Polym. J. 41, 913 (2005).

    CAS  Article  Google Scholar 

  3. 3

    G. F. Novikov, E. V. Rabenok, L. M. Bogdanov, and V. I. Irzhak, Polym. Sci., Ser. A 59, 741 (2017).

    CAS  Article  Google Scholar 

  4. 4

    M. V. Saifutdinova, V. M. Mikhal’chuk, and R. I. Lyga, Vestn. Tverskogo Gos. Univ., Ser. Khim., No. 4, 188 (2016).

  5. 5

    M. V. Saifutdinova, R. I. Lyga, V. M. Mikhal’chuk, and O. I. Dikhtenko, Vestn. Novgorod. Gos.Univ., No. 5 (103), 109 (2017).

  6. 6

    Y. P. Gomza, V. V. Klepko, S. V. Zhil’tsova, V. M. Mikhal’chuk, L. A. Savenkova, T. E. Konstatinova, and V. A. Beloshenko, Polym. Sci., Ser. A 52, 628 (2010).

    Article  Google Scholar 

  7. 7

    S. O. Il’in, E. P. Plotnikova, M. L. Kerber, and I. Y. Gorbunova, Int. Polym. Sci. Technol. 39, T57 (2012).

    Article  Google Scholar 

  8. 8

    O. V. Akhmatova, S. V. Zyukin, Y. Kh. Vei, S. A. Smotrova, M. L. Kerber, V. S. Osipchik, and I. Yu. Gorbunova, Plast. Massy, No. 10, 55 (2010).

    Google Scholar 

  9. 9

    I. Y. Gorbunova, I. S. Sirotin, Y. V. Bilichenko, S. N. Filatov, M. L. Kerber, T. P. Kravchenko, and V. V. Kireev, Polym. Sci., Ser. B 57, 402 (2015).

    Article  Google Scholar 

  10. 10

    V. V. Kireev, I. D. Simonov-Emel’yanov, Yu. V. Bilichenko, K. A. Brigadnov, S. N. Filatov, N. V. Apeksimov, and A. R. Nikitina, Plast. Massy, Nos. 3–4, 26 (2016).

    Google Scholar 

  11. 11

    D. V. Onuchin, I. S. Sirotin, G. A. Pavlova, S. N. Filatov, V. V. Kireev, M. L. Kerber, I. Y. Gorbunova, Polym. Sci., Ser. B 60, 182 (2018).

    CAS  Article  Google Scholar 

  12. 12

    A. E. Chalykh, E. S. Zhavoronok, Z. A. Kochkova, and M. R. Kiselev, Russ. J. Phys. Chem. B 3, 507 (2009).

    Article  Google Scholar 

  13. 13

    R. I. Sopotov, S. V. Zyukin, V. A. Brodskii, M. L. Kerber, Yu. E. Doroshenko, and I. Yu. Gorbunova, Khim. Prom-st Segodnya, No. 11, 51 (2014).

    Google Scholar 

  14. 14

    M. P. Arinina, S. O. Il’in, V. V. Makarova, I. Y. Gorbunova, M. L. Kerber, and V. G. Kulichihin, Polym. Sci., Ser. A 57, 177 (2015).

    CAS  Article  Google Scholar 

  15. 15

    M. P. Arinina, V. A. Kostenko, I. Y. Gorbunova, S. O. Il’in, and A. Ya. Malkin, Polym. Sci., Ser. A 60, 683 (2018).

    CAS  Article  Google Scholar 

  16. 16

    D. Ch. Do, T. V. Khoang, V. S. Osipchik, S. A. Smotrova, and I. Yu. Gorbunova, Plast. Massy, No. 10, 53 (2010).

    Google Scholar 

  17. 17

    R. I. Sopotov, S. V. Zyukin, I. Yu. Gorbunova, M. L. Kerber, Yu. E. Doroshenko, T. P. Kravchenko, V. I. Il’in, and S. Yu. Tuzova, Plast. Massy, Nos. 11–12, 7 (2015).

    Google Scholar 

  18. 18

    Polymer Composite Materials: Structure, Properties, Technology, Ed. by A. A. Berlina (Professiya, Moscow, 2014) [in Russian].

    Google Scholar 

  19. 19

    E. V. Plakunova, E. A. Tatarintseva, and L. G. Panova, Plast.Massy, No. 1, 11 (2008).

    Google Scholar 

  20. 20

    L. S. Shibryaeva, I. Yu. Gorbunova, and M. L. Kerber, Russ. J. Phys. Chem. B 8, 733 (2014).

    CAS  Article  Google Scholar 

  21. 21

    C. Ciobany, D. Rosu, C. N. Cascaval, and L. Rosu, J. Macromol. Sci., Part A: Pure Appl. Chem. 38, 991 (2001).

    Article  Google Scholar 

  22. 22

    S. Terekhina, M. Mille, B. Fayolle, and X. Colin, Polym. Sci., Ser. A 55, 614 (2013).

    CAS  Article  Google Scholar 

  23. 23

    V. A. Kostenko, L. S. Bichevii, P. A. Povernov, N. V. Bornosuz, and I. Yu. Gorbunova, Usp. Khim. Khim. Tekhnol. 32 (6 (202)), 68 (2018).

    Google Scholar 

  24. 24

    R. I. Sopotov and I. Yu. Gorbunova, Usp. Khim. Khim. Tekhnol. 27 (3), 101 (2013).

    Google Scholar 

  25. 25

    L. S. Shibryaeva, Progress in Physics and Chemistry of Polymers (Khimiya, Moscow, 2004) [in Russian].

    Google Scholar 

  26. 26

    L. S. Shibryaeva, Yu. A. Reshmin, O. V. Shatalova, A. V. Krivandin, E. S. Kuksenko, I. Yu. Gorbunova, and M. L. Kerber, Polym. Sci., Ser. A 49, 12 (2007).

    Article  Google Scholar 

  27. 27

    Y. V. Tertyshnaya, L. S. Shibryaeva, and A. A. Ol’khov, Russ. J. Phys. Chem. B 9, 498 (2015).

    CAS  Article  Google Scholar 

  28. 28

    H.-J. Flammersheim and J. R. Opfermann, Macromol. Mater. Eng. 286, 143 (2001).

    CAS  Article  Google Scholar 

  29. 29

    J. D. Menczel and R. B. Prime, Thermal Analysis of Polymers, Fundamentals and Applications (Wiley, New York, 2009).

    Book  Google Scholar 

  30. 30

    J. H. Chan and S. T. Balke, Polym. Degrad. Stab 57, 135 (1997).

    CAS  Article  Google Scholar 

  31. 31

    S. G. Kulichikhin, I. Yu. Gorbunova, M. L. Kerber, and E. V. Samardukov, Vysokomol. Soedin., Ser. B 37, 533 (1995).

    CAS  Google Scholar 

  32. 32

    M. J. Starink, Thermochim. Acta 404, 163 (2003).

    CAS  Article  Google Scholar 

  33. 33

    T. J. Ozawa, J. Therm. Anal. 31, 547 (1986).

    CAS  Article  Google Scholar 

  34. 34

    T. J. Ozawa, Thermochim. Acta 355, 35 (2000).

    CAS  Article  Google Scholar 

  35. 35

    T. J. Ozawa, J. Therm. Anal. Calorim. 82, 687 (2005).

    CAS  Article  Google Scholar 

  36. 36

    P. Albu, C. Bolcu, G. Vlase, N. Doca, and T. Vlase, J. Therm. Anal. Calorim. 105, 685 (2011).

    CAS  Article  Google Scholar 

  37. 37

    T. F. Irzhak and V. I. Irzhak, Polym. Sci., Ser. A 59, 791 (2017).

    CAS  Article  Google Scholar 

  38. 38

    Quick Reference Handbook on Physicochemical Quantities, Ed. by K. P. Mishchenko and A. A. Ravdelya (Khimiya, Leningrad, 1974) [in Russian].

    Google Scholar 

  39. 39

    E. Moukhina, J. Therm. Anal. Calorim. 109, 1203 (2012).

    CAS  Article  Google Scholar 

  40. 40

    E. Moukhina, in Proceedings of 39th North American Thermal Analysis Society Conference, Des Moines, Iowa, USA, 2011 (Des Moines, 2011), p. 335.

  41. 41

    V. R. Pen, Khim. Rast. Syr’ya, No. 2, 101 (2004).

    Google Scholar 

  42. 42

    M. I. Sumin, Regulation Methods of A. N. Tikhonova to Solve Operative equations of First Kind. Study Guide (Nizhegorod. Gos. Univ., Nizhnii Novgorod, 2016) [in Russian].

Download references

Author information



Corresponding author

Correspondence to L. S. Shibryaeva.

Additional information

Translated by T. Soboleva

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shibryaeva, L.S., Gorbunova, I.Y., Kerber, M.L. et al. Features of Thermo-Oxidative Degradation of Epoxy Oligomer-Based Compositions with Thermoplastic Fillers. Polym. Sci. Ser. B 63, 367–384 (2021).

Download citation