Skip to main content

Pyrolysis Behavior of Ester Substituted Poly(p-phenylene)s and Determination of Its Microstructural Arrangement through TGA

Abstract

Four 2,5-dicholorobenzoate monomers were prepared by chlorination and esterification and then polymerized to ester substituted poly(p-phenylene)s through Ni/Zn catalyzed coupling reaction. The thermal stability and pyrolysis behavior of ester substituted poly(p-phenylene)s were investigated through TGA method. The possible mechanism of thermal modification of the polymers was proposed that included de-esterification, dehydration and decarboxylation, and finally de-anhydridization. Only pyrolysis of esters substituted poly(p-phenylene)s containing two neighboring carboxyl groups may result in the formation of the corresponding anhydride.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. 1

    T. Yamamoto, J. Appl. Polym. Sci. 89, 2210 (2003).

    Article  CAS  Google Scholar 

  2. 2

    H. Witteler, G. Lieser, G. Wegner, and M. Schulze, Macromol. Rapid Commun. 14, 471 (1993).

    CAS  Article  Google Scholar 

  3. 3

    F. Ahmed, S. C. Sutradhar, T. Ryu, H. Jang, K. Choi, H. Yang, S. Yoon, M. M. Rahman, and W. Kim, Int. J. Hydrogen Energy 43, 5374 (2018).

    CAS  Article  Google Scholar 

  4. 4

    A. Osawa, T. Ishizuka, M. Yoshizawafujita, Y. Takeoka, and M. Rikukawa, Kagaku Kogaku Ronbunshu 39, 224 (2013).

    CAS  Article  Google Scholar 

  5. 5

    S. Seesukphronrarak, K. Ohira, K. Kidena, N. Takimoto,C. S. Kuroda, and A. Ohira, Polymer 51, 623 (2010).

    CAS  Article  Google Scholar 

  6. 6

    X. Zhang, Y. Pu, Z. Hu, S. Chen, Y. Ling,and S. Chen, J. Power Sources 216, 261 (2012).

    CAS  Article  Google Scholar 

  7. 7

    X. Zhang, S. Chen, J. Liu, Z. Hu, S. Chen, and L. Wang, J. Membr. Sci. 371, 276 (2011).

    CAS  Article  Google Scholar 

  8. 8

    H. Wang, A. S. Badami, A. Roy,and J. E. Mcgrath, J. Polym. Sci., Part A: Polym. Chem. 45, 284 (2007).

    CAS  Article  Google Scholar 

  9. 9

    R. W. Phillips, V. V. Sheares, E. T. Samulski, and J. M. Desimone, Macromolecules 27, 2354 (1994).

    CAS  Article  Google Scholar 

  10. 10

    H. Ghassemi and J. E. Mcgrath, Polymer 45, 5847 (2004).

    CAS  Article  Google Scholar 

  11. 11

    S. Seesukphronrarak and A. Ohira, Chem. Commun. 34, 4744 (2009).

    Article  CAS  Google Scholar 

  12. 12

    H. Ghassemi, G. Ndip, and J. E. Mcgrath, Polymer 45, 5855 (2004).

    CAS  Article  Google Scholar 

  13. 13

    I. Tonozuka, M. Yoshida, K. Kaneko, Y. Takeoka,and M. Rikukawa, Polymer 52, 6020 (2011).

    CAS  Article  Google Scholar 

  14. 14

    S. Cheng, K. Yuan, X. Wang, J. Han, X. Jian, and J. Wang, Polymer 2, 224 (2017).

    Article  CAS  Google Scholar 

  15. 15

    P. D. Bloom, C. A. Jones,and V. V. Sheares, Macromolecules 38, 2159 (2005).

    CAS  Article  Google Scholar 

  16. 16

    V. Percec, S. Okita, and R. Weiss, Macromolecules 25, 1816 (1992).

    CAS  Article  Google Scholar 

  17. 17

    S. Wu, Z.Qiu, S. Zhang, X. Yang, F. Yang, and Z. Li, Polymer 47, 6993 (2006).

    CAS  Article  Google Scholar 

  18. 18

    N. Tanigaki, H. Masuda,and K. Kaeriyama, Polymer 38, 1221 (1997).

    CAS  Article  Google Scholar 

  19. 19

    S. Traser, P. Wittmeyer, and M. Rehahn, e-Polym. 2, 452 (2002).

  20. 20

    M. Remmers, B. Muller, K. Martin, H. J. Rader, and W. Kohler, Macromolecules 32, 1073 (1999).

    CAS  Article  Google Scholar 

  21. 21

    E. C. Hagberg, D. Olson, and V. V. Sheares, Macromolecules 37, 4748 (2004).

    CAS  Article  Google Scholar 

  22. 22

    S. Hill, I.Hamerton, J. N. Hay,and B. J. Howlin, Polymer 43, 4103 (2002).

    CAS  Article  Google Scholar 

  23. 23

    M. E. Wright, K. M. Lott, M. A. Mchugh, and Z. Shen, Macromolecules 36, 2242 (2003).

    CAS  Article  Google Scholar 

  24. 24

    Y. Wang and R. P. Quirk, Macromolecules 28, 3495 (1995).

    CAS  Article  Google Scholar 

  25. 25

    Z. Y. Wang, J. Franklin, D. Venkatesan,and Y. Wang, Macromolecules 32, 1691 (1999).

    CAS  Article  Google Scholar 

  26. 26

    R. P. Quirk, Adv. Polym. Sci. 17, 349 (2005).

    CAS  Google Scholar 

  27. 27

    T. Sakaguchi, S. Tominaga, and T. Hashimoto, Polymer 52, 2163 (2011).

    CAS  Article  Google Scholar 

  28. 28

    K. Kaeriyama, S. Kouyama, M. Sekita, T. Nakayama, and Y. Tsukahara, Macromol. Rapid Commun. 20, 50 (1999).

    CAS  Article  Google Scholar 

  29. 29

    T. Sakaguchi, T. Nakano, S. Tominaga, and T. Hashimoto, Polym. J. 47, 362 (2015).

    CAS  Article  Google Scholar 

  30. 30

    V. Percec, J. Bae, M. Zhao,and D. H. Hil, Macromolecules 28, 6726 (1995).

    CAS  Article  Google Scholar 

  31. 31

    F. Wu, H. Ben, Y. Yang, H. Jia, R. Wang, and G. Han, Polymers 12, 973 (2020).

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  32. 32

    I.Blanco, L. Abate, M. L. Antonelli, F. A.Bottino,and P.Bottino, eXPRESS Polym. Lett. 6, 997 (2012).

    CAS  Article  Google Scholar 

  33. 33

    I. Blanco, L. Abate,and F. A. Bottino, J. Therm. Anal. Calorim. 116, 5 (2014).

    CAS  Article  Google Scholar 

  34. 34

    I. Blanco, L. Abate, F. A. Bottino, and P. Bottino, J. Therm. Anal. Calorim. 117, 243 (2014).

    CAS  Article  Google Scholar 

  35. 35

    I. Blanco, L. Abate, and F. A. Bottino, J. Therm. Anal. Calorim. 121, 1039 (2015).

    CAS  Article  Google Scholar 

  36. 36

    I. Blanco, F. A. Bottino, and L. Abate, Thermochim. Acta 623, 50 (2016).

    CAS  Article  Google Scholar 

  37. 37

    I. Blanco, L. Abate, and F. A. Bottino, Thermochim. Acta 655, 117 (2017).

    CAS  Article  Google Scholar 

  38. 38

    I. Blanco, L. Abate, and F. A. Bottino, J. Therm. Anal. Calorim. 131, 843 (2018).

    CAS  Article  Google Scholar 

  39. 39

    C. Gai, Y. Dong, and T. Zhang, Bioresour. Technol. 127, 298 (2013).

    CAS  PubMed  Article  Google Scholar 

  40. 40

    B. Janković, Cellulose 21, 2285 (2014).

    Article  CAS  Google Scholar 

  41. 41

    G. Cavallaro, A. A.Gallitto, L. Lisuzzo,and G. Lazzara, Cellulose 26, 8853 (2019).

    Article  Google Scholar 

  42. 42

    V. Chaturvedi, S. Tanaka, and K. Kaeriyama, Macromolecules 26, 2607 (1993).

    CAS  Article  Google Scholar 

  43. 43

    T. I. Wallow and B. M. Novak, J. Am. Chem. Soc. 113, 7411 (1991).

    CAS  Article  Google Scholar 

Download references

Funding

This research was supported in part by the National Key R and D Program of China (Grant no. 2016YFB0500200).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Danbo Mao.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Danbo Mao, Yuechuan Wang Pyrolysis Behavior of Ester Substituted Poly(p-phenylene)s and Determination of Its Microstructural Arrangement through TGA. Polym. Sci. Ser. B 63, 358–366 (2021). https://doi.org/10.1134/S1560090421040060

Download citation