Skip to main content

Fabrication of Schottky Diodes Based on Cu Electrode and Polyaniline Cadmium Oxide (PANI/CdO) Composites


In situ chemical polymerization technique was used to synthesize polyaniline (PANI) and polyaniline сadmium oxide (PANI/CdO) composites with different weight percentage of CdO dopant. Structure and morphology of pure and synthesized nanocomposites were characterized by XRD and SEM techniques. Different weight percentage of CdO dopant was used to verify their effects on these characteristics. The XRD results represent better crystallinity and show more intense peaks of PANI/CdO composites with addition of CdO nano particles. The SEM investigations of PANI/CdO сomposites show well intercalary, agglomerated platelet as well as flaky structure. Current density−voltage (JV) characteristics of ITO/PANI/Cu, ITO/PANI-CdO composites/Cu fabricated Schottky diodes were investigated at room and some elevated temperatures in the potential window ±20 V. The junction parameters such as saturation current density, ideality factor and barrier height were calculated and found to be influenced by the doping concentration of CdO as well as temperature variation. The electrical behavior of PANI with CdO was found to be in good agreement with the thermionic emission model for the Schottky barrier type devices.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.


  1. 1

    A.Hajibadali, M. Baghaei Nejad and G. Farzi, Braz. J. Phys. 45, 394 (2015).

    CAS  Article  Google Scholar 

  2. 2

    A. M. Farag, A. Ashery, and M. Abdel Rafea, Synth. Met. 160, 156 (2010).

    CAS  Article  Google Scholar 

  3. 3

    A. A. Khan and L. Paquiza, Synth. Met. 161, 899 (2011).

    CAS  Article  Google Scholar 

  4. 4

    A. Budkowski, A. Bernasik, E. Moons, M. Lekka, J. Zemla, J. Jaczewska, J. Haberko, J. Raczkowska, J. Rysz, and K. Awsiuk, Acta Phys. Pol., A 115, 435 (2009).

    CAS  Article  Google Scholar 

  5. 5

    Conjugate Polymers, Ed. by J. L. Bredas and R. Silbey (Kluwer Acad., London, 1991).

    Google Scholar 

  6. 6

    R. Gupta, S. C. K. Misra, B. D. Malhotra, N. N. Beladakere, and S. Chandra, Appl. Phys. Lett. 58, 51 (1991).

    CAS  Article  Google Scholar 

  7. 7

    J. Unsworth, B. A. Lunn, P. C. Innis, Z. Jin, A. Kaynak, and N. G. Booth, J. Intell. Mater. Syst. Struct. 3, 380 (1992).

    Article  Google Scholar 

  8. 8

    V. C. Nguyen and K. Potje-Kamloth, Thin Solid Films 338, 142 (1999).

    CAS  Article  Google Scholar 

  9. 9

    R. K. Gupta and R. A. Singh, Mater. Sci. Semicond. Process. 7, 83 (2004).

    CAS  Article  Google Scholar 

  10. 10

    R. Cabala, V. Meister, and K. Potje-Kamloth, J. Chem. Soc., Faraday Trans. 93, 131 (1997).

    CAS  Article  Google Scholar 

  11. 11

    J. Tang, F. Redl, Y. Zhu, T. Siegrist, L. E. Brus, and M. L. Steigerwald, Nano Lett. 5, 543 (2005).

    CAS  PubMed  Article  Google Scholar 

  12. 12

    X. Jiang, T. Herricks, and Y. Xia, Adv. Mater. 15, 1205 (2003).

    CAS  Article  Google Scholar 

  13. 13

    M. Tabatabaee, A. A. Mozafari, M. Ghassemzadeh, M. Reza Nateghi, and I. Abedini, Bulg. Chem.Commun. 45, 90 (2013).

    CAS  Google Scholar 

  14. 14

    Y. Su, F. Peng, Z. Jiang, Y. Zhong, Y. Lu, X. Jiang, Q. Huang, C. Fan, S.-T. Lee, and Y. He, Biomaterials 32, 5855 (2011).

    CAS  PubMed  Article  Google Scholar 

  15. 15

    Z. Han, J. Zhang, X. Yang, and W. Cao, Sol. Energy Mater. Sol. Cells 95, 483 (2011).

    CAS  Article  Google Scholar 

  16. 16

    Y. Du and G.-C. Li, Phys. E (Amsterdam, Neth.) 43, 994 (2011).

  17. 17

    P. Bera, C.-H. Kim, and S. Seok, II, Solid State Sci. 12, 1741 (2010).

    CAS  Article  Google Scholar 

  18. 18

    V. S. Sawant, S. S. Shinde, R. J. Deokate, C. H. Bhosale, B. K. Chougule, and K. Y. Rajpure, Appl. Surf. Sci. 255, 6675 (2009).

    CAS  Article  Google Scholar 

  19. 19

    P. Biljana, Mater. Chem. Phys. 119, 367 (2010).

    Article  CAS  Google Scholar 

  20. 20

    S. Kondawar, R. Mahore, A. Dahegaonkar, and S. Agrawal, Adv. Appl. Sci. Res. 2, 401 (2011).

    CAS  Google Scholar 

  21. 21

    C. C. Vidyasagar, Y. A. Naik, T. G. Venkatesh, and R. Viswanatha, Powder Technol. 214, 337 (2011).

    CAS  Article  Google Scholar 

  22. 22

    H. Colak and O. Turkoglu, Mater. Sci. Semicond. Process. 16, 712 (2013).

    CAS  Article  Google Scholar 

  23. 23

    F. Yakuphanoglu, Sol. Energy 85, 2704 (2011).

    CAS  Article  Google Scholar 

  24. 24

    S. Calnan and A. N. Tiwari, Thin Solid Films 518, 1839 (2010).

    CAS  Article  Google Scholar 

  25. 25

    M. T. Khan, R. Bhargav, A. Kaur, S. K. Dhawan, and S. Chand, Thin Solid Films 519, 1007 (2010).

    CAS  Article  Google Scholar 

  26. 26

    S. Ashoka, G. Nagaraju, K. V. Thipperudraiah, and G. T. Chandrappa, Mater. Res. Bull. 45, 1736 (2010).

    CAS  Article  Google Scholar 

  27. 27

    S. A. Kavitha, M. P. Dharshini, V. Shally, and S. G. Jayam, Int. J. Eng. Trends Technol. 60, 147 (2018).

    Article  Google Scholar 

  28. 28

    S. Roy, K. R. Anilkumar, and M. V. N. Ambika Prasad, J. Appl. Polym. Sci. 123, 1928 (2012).

    CAS  Article  Google Scholar 

  29. 29

    S. A.Yeriskin, H. Ibrahim Unal, and B. Sari, J. Appl. Polym. Sci. 120, 390 (2011).

    CAS  Article  Google Scholar 

  30. 30

    A. Shakoor, H. Anwar, and T. Z. Rizvi, J. Compos. Mater. 42, 2101 (2008).

    CAS  Article  Google Scholar 

  31. 31

    L. Xingwei, G. Wang, L. Xiaoxuan, and L. Dongming, Appl. Surf. Sci. 229, 395 (2004).

    Article  CAS  Google Scholar 

  32. 32

    A. L. Patterson, Phys. Rev. J. 56, 978 (1939).

    CAS  Article  Google Scholar 

  33. 33

    L. Zheng, Y. Xu, D. Jin, and Y. Xie, Chem. - Asian J. 6, 1505 (2011).

    CAS  PubMed  Article  Google Scholar 

  34. 34

    Jaidev, R. I. Jafri, A. K. Mishra, and S. Ramaprabhu, J. Mater. Chem. 21, 17601 (2011).

    CAS  Article  Google Scholar 

  35. 35

    W. L. Bragg, Proc. Cambridge Philos. Soc. 17, 43 (1914).

    Google Scholar 

  36. 36

    R. A. Zargar, S. Chackarabarti, M. Arora, and A. K. Hafiz, Int. Nano Lett. 6, 99 (2016).

    CAS  Article  Google Scholar 

  37. 37

    A. Elahi, M. Irfan, A. Shakoor, N. A. Niaz, K. Mahmood, and M. Qasim, J. Alloy. Compd. 651, 328 (2015).

    CAS  Article  Google Scholar 

  38. 38

    S. R. Pollack, J. Appl. Phys. 34, 877 (1963).

    CAS  Article  Google Scholar 

  39. 39

    A. Shakoor, T. Z. Rizvi, M. Sulaiman, M. Nasir, and M. Ishtiaq, J. Mater. Sci.: Mater. Electron. 21, 603 (2010).

    CAS  Google Scholar 

  40. 40

    E. H. Rhoderick and R. H. William, Metal Semiconductor Contacts, 2nd ed. (Clarendon, Oxford, 1998).

    Google Scholar 

  41. 41

    S. M. Sze, Semiconductor Devices (Wiley, New York, 1985).

    Google Scholar 

  42. 42

    H. Tomozawa, D. Braun, S. Philips, A. J. Heeger, and H. Kroemer, Synt. Met. 22, 63 (1987).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Nadeem Anwar.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nadeem Anwar, Shakoor, A., Qamar, W. et al. Fabrication of Schottky Diodes Based on Cu Electrode and Polyaniline Cadmium Oxide (PANI/CdO) Composites. Polym. Sci. Ser. B 63, 432–440 (2021).

Download citation