Skip to main content
Log in

Self-Peristaltic Gel-Microspheres Based on Carboxymethyl Cellulose and Polyacrylic Acid Prepared via Inverse Suspension for Recovery Rare Earth Ions from Aqueous Solution

  • FUNCTIONAL POLYMERS
  • Published:
Polymer Science, Series B Aims and scope Submit manuscript

Abstract

In this study, cross-linked microspheres formed by interpenetrating networks of carboxymethyl cellulose and polyacrylic acid were prepared via inverse-suspension polymerization. The resultant has high adsorption capacity for rare earth ions, can reach 313 mg/g for Ce3+ under the condition of pH 6 at normal temperature. Unique self-creep characteristic gives it a fast-speed adsorption performance, which makes it to reach adsorption equilibrium within 70 min. It also has good reuse performance; its adsorption capacity decrease rate is only 21% after six adsorption–desorption cycles. Adsorption kinetics and thermodynamic studies and adsorption isothermal analysis were researched as well. The research conclusion suggested that this adsorbent is a promising adsorbent for recovering the rare earth ions from wastewater containing rare earth. And all related experiments show that ISP method is effective for making spherical macromolecular adsorbents via water-soluble monomers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. G. Moldoveanu, Can. Metall. Q. 52, 223 (2013).

    CAS  Google Scholar 

  2. D. Voßenkaul, N. Stoltz, F. Meyer, and B. Friedrich, in Proceedings of European Metallurgical Conference, Dusseldorf, Germany,2015 (Dusseldorf, 2015). https://doi.org/10.13140/RG.2.1.1177.6401

  3. G. A. Moldoveanu and V. G.Papangelakis, Hydrometallurgy 131–132, 158 (2013).

    Google Scholar 

  4. G. A. Moldoveanu and V. G. Papangelakis, Hydrometallurgy 117–118, 71 (2012).

    Google Scholar 

  5. G. A. Moldoveanu and V. G. Papangelakis, Mineral. Mag. 80, 63 (2016).

    CAS  Google Scholar 

  6. X. Huang, J. Dong, L. Wang, Z. Feng, Q. Xue, and X. Meng, Green Chem. 19, 1345 (2017).

    CAS  Google Scholar 

  7. X. J. Yang, A. Lin, X. L. Li, Y. Wu, W. Zhou, and Z. Chen, Environ. Dev. 8, 131 (2013).

    Google Scholar 

  8. G. Protano and F. Riccobono, Environ. Pollut. 117, 499 (2002).

    CAS  Google Scholar 

  9. D. Xiaoyue and T. E. Graedel, Environ. Sci. Technol. 45, 4096 (2011).

    Google Scholar 

  10. H. Chua, Sci. Total Environ. 214, 79 (1998).

    CAS  Google Scholar 

  11. P. J. Thomas, D. Carpenter, C. Boutin, and J. E. Allison, Chemosphere 96, 57 (2014).

    CAS  Google Scholar 

  12. P. Zhang, Y. Ma, S. Liu, G. Wang, J. Zhang, X. He, J. Zhang, Y. Rui, and Z. Zhang, Environ. Pollut. 220, 1400 (2017).

    CAS  Google Scholar 

  13. L. Xiaofei, C. Zhibiao, C. Zhiqiang, and Z. Yonghe, Chemosphere 93, 1240 (2013).

    Google Scholar 

  14. G. Pagano, F. Aliberti, M. Guida, R. Oral, A. Siciliano, M. Trifuoggi, and F. Tommasi, Environ. Res. 142, 215 (2015).

    CAS  Google Scholar 

  15. G. Pagano, M. Guida, F. Tommasi, and R. Oral, Ecotoxicol. Environ. Saf. 115, 40 (2015).

    CAS  Google Scholar 

  16. G. Pagano, P. J. Thomas, A. Di Nunzio, and M. Trifuoggi, Environ. Res. 171, 493 (2019).

    CAS  Google Scholar 

  17. R. Kyung Taek, K. Kwon Ho, and P. Jung Sun, Saf. Health Work 4, 12 (2013).

    Google Scholar 

  18. W. Huo, Y. Zhu, Z. Li, Y. Pang, B. Wang, and Z. Li, Environ. Pollut. 226, 89 (2017).

    CAS  Google Scholar 

  19. T. Song, W. Luo, J. Mu, Y. Cai, J. Wei, and H. Li, J. Colloid Interface Sci. 535, 371 (2019).

    CAS  Google Scholar 

  20. A. Gładysz-Płaska, M. Majdan, and E. Grabias, J. Radioanal. Nucl. Chem. 301, 33 (2014).

    Google Scholar 

  21. L. Zhang, Y. Zeng, and Z. Cheng, J. Mol. Liq. 214, 175 (2016).

    CAS  Google Scholar 

  22. T. Ogata, H. Narita, M. Tanaka, M. Hoshino, Y. Kon, and Y. Watanabe, Sep. Purif. Technol. 159, 157 (2016).

    CAS  Google Scholar 

  23. T. Ogata, H. Narita, and M. Tanaka, Hydrometallurgy 152, 178 (2015).

    CAS  Google Scholar 

  24. A. A. Galhoum, M. Mafhouz, N. Gomaa, E. Guibal, T. Vincent, A. Atia, T. Vincet, and E. Guibal, Sep. Sci. Technol. 50, 2776 (2015).

    CAS  Google Scholar 

  25. F. Zhao, E. Repo, Y. Meng, X. Wang, D. Yin, and M. Sillanpää, J. Colloid Interface Sci. 465, 215 (2016).

    CAS  Google Scholar 

  26. A. E. Burakov, I. V. Burakova, E. V. Galunin, and A. E. Kucherova, “New Carbon Nanomaterials for Water Purification from Heavy Metals,” in Handbook of Ecomaterials, Ed. by L. Martínez, O. Kharissova, and B. Kharisov (Springer, Cham, 2018).

    Google Scholar 

  27. C. Lin, W. Luo, J. Chen, and Q. Zhou, Chem. Phys. Lett. 690, 68 (2017).

    CAS  Google Scholar 

  28. T. Luo, X. Tian, C. Yang, W. Luo, Y. Nie, and Y. Wang, J. Agric. Food Chem. 65, 7153 (2017).

    CAS  Google Scholar 

  29. W. Xue, C. Yan, S. Na, T. Luo, S. Zhou, and W. Luo, J. Polym. Environ. 25, 1 (2017).

    Google Scholar 

  30. G. Joshi, S. Naithani, V. K. Varshney, S. S. Bisht, V. Rana, and P. K. Gupta, Waste Manage. 38, 33 (2015).

    CAS  Google Scholar 

  31. N. I. Tkacheva, S. V. Morozov, I. A. Grigor’ev, D. M. Mognonov, and N. A. Kolchanov, Polym. Sci., Ser. B 55, 409 (2013).

    CAS  Google Scholar 

  32. M. Kurdtabar, H. Nezam, G. Rezanejade Bardajee, M. Dezfulian, and H. Salimi, Polym. Sci., Ser. B 60, 231 (2018).

    CAS  Google Scholar 

  33. B. Yan, J. Ma, and L. Na, Carbohydr. Polym. 84, 76 (2011).

    Google Scholar 

  34. G. Joshi, S. Naithani, V. K. Varshney, S. S. Bisht, and V. Rana, J. Cleaner Prod. 142, 3759 (2017).

    CAS  Google Scholar 

  35. T. E. Knyazeva, I. B. Myasnikova, V. V. Medvedeva, and Y. D. Semchikov, Polym. Sci., Ser. B 48, 113 (2006).

    Google Scholar 

  36. D. R. Biswal and R. P. Singh, Carbohydr. Polym. 57, 379 (2004).

    CAS  Google Scholar 

  37. V. V. Spiridonov, I. G. Panova, M. I. Afanasov, S. B. Zezin, A. V. Sybachin, and A. A. Yaroslavov, Polym. Sci., Ser. B 60, 116 (2018).

    CAS  Google Scholar 

  38. A. E. Burakov, E. V. Galunin, I. V. Burakova, A. E. Kucherova, S. Agarwal, A. G. Tkachev, and V. K. Gupta, Ecotoxicol. Environ. Saf. 148, 702 (2017).

    Google Scholar 

  39. E. Da’Na, Microporous Mesoporous Mater. 247, 145 (2017).

    Google Scholar 

  40. G. Naja, C. Mustin, B. Volesky, and J. Berthelin, Int. J. Environ. Pollut. 34, 14 (2008).

    CAS  Google Scholar 

  41. G. Zhou, J. Luo, C. Liu, L. Chu, and J. Crittenden, Water Res. 131, 246 (2017).

    Google Scholar 

  42. F. Fu and Q. Wang, J. Environ. Manage. 92, 407 (2011).

    CAS  Google Scholar 

  43. E. Mkrtchyan, A. Burakov, and I. Burakova, Mater. Today: Proc. 11, 404 (2019).

    CAS  Google Scholar 

  44. J. Chen, W. Luo, A. Guo, T. Luo, C. Lin, H. Li, and L. Jing, J. Colloid Interface Sci. 512, 657 (2018).

    CAS  Google Scholar 

  45. Y. Liu, X. Cao, R. Hua, Y. Wang, Y. Liu, C. Pang, and Y. Wang, Hydrometallurgy 104, 150 (2010).

    CAS  Google Scholar 

  46. M. Wallace, D. J. Adams, and J. A. Iggo, Soft Matter 9, 5483 (2013).

    CAS  Google Scholar 

  47. C. Colquhoun, E. R. Draper, R. Schweins, M. Marcello, D. Vadukul, L. C. Serpell, and D. J. Adams, Soft Matter 13, 1914 (2017).

    CAS  Google Scholar 

  48. J.-Y. Sun, X. Zhao, W. R. K. Illeperuma, O. Chaudhuri, K. H. Oh, D. J. Mooney, J. J. Vlassak, and Z. Suo, Nature 489,133 (2012).

    CAS  Google Scholar 

  49. Y. Yang, X. Wang, F. Yang, H. Shen, and D. Wu, Adv. Mater. 28, 7178 (2016).

    CAS  Google Scholar 

  50. K. R. Shull, Nature 489, 36 (2012).

    CAS  Google Scholar 

  51. L. Chen, J. Raeburn, S. Sutton, D. G. Spiller, J. Williams, J. S. Sharp, P. C. Griffiths, R. K. Heenan, S. M. King, A. Paul, S. Furzeland, D. Atkins, and D. J. Adams, Soft Matter 7, 9721 (2011).

    CAS  Google Scholar 

  52. J. Raeburn, A. Z. Cardoso, and D. J. Adams, Chem. Soc. Rev. 42, 5143 (2013).

    CAS  Google Scholar 

  53. F. Huang, Y. Zheng, and Y. Yang, J. Appl. Polym. Sci. 103, 351 (2007).

    CAS  Google Scholar 

  54. E. Kusaka, Y. Kamata, Y. Fukunaka, and Y. Nakahiro, Colloids Surf., A 139, 155 (1998).

    CAS  Google Scholar 

  55. J. G. Serrano and O. C. D. Garcia, J. Radioanal. Nucl. Chem. 230, 33 (1998).

    Google Scholar 

  56. E. H. Borai, M. G. Hamed, A. M. El-kamash, T. Siyam, and G. O. El-Sayed, New J. Chem. 39, 7409 (2015).

    CAS  Google Scholar 

  57. D. Lu, Q. Cao, X. Li, X. Cao, F. Luo, and W. Shao, Hydrometallurgy 95, 145 (2009).

    CAS  Google Scholar 

  58. S. Liang, X. Guo, N. Feng, and Q. Tian, J. Hazard. Mater. 174, 756 (2010).

    CAS  Google Scholar 

  59. Q. Zhou, Q. Gao, W. Luo, C. Yan, Z. Ji, and P. Duan, Colloids Surf., A 470, 248 (2015).

    CAS  Google Scholar 

  60. K. Rahimi, R. Mirzaei, A. Akbari, and N. Mirghaffari, J. Cleaner Prod. 178, 373 (2018).

    CAS  Google Scholar 

  61. A. Asfaram, M. Ghaedi, S. Hajati, A. Goudarzi, and E. A. Dil, Ultrason. Sonochem. 34, 1 (2017).

    CAS  Google Scholar 

  62. R. Sahraei, K. Hemmati, and M. Ghaemy, RSC Adv. 6, 72487 (2016).

  63. C. Kütahyalı, Ş. Sert, B. Çetinkaya, E. Yalçıntaş, and M. B. Acar, Wood Sci. Technol. 46, 721 (2012).

    Google Scholar 

  64. Ş. Sert, C. Kütahyali, S. İnan, Z. Talip, B. Çetinkaya, and M. Eral, Hydrometallurgy 90, 13 (2008).

    CAS  Google Scholar 

  65. K. Vijayaraghavan and R. Balasubramanian, Chem. Eng. J. 163, 337 (2010).

    CAS  Google Scholar 

  66. K. Vijayaraghavan, M. Sathishkumar, and R. Balasubramanian, Ind. Eng. Chem. Res. 49, 4405 (2010).

    CAS  Google Scholar 

  67. H. X. Ou, W. B. Bian, X. M. Weng, W. H. Huang, and Y. L. Zhang, Appl. Mech. Mater. 316–317, 391 (2013).

    Google Scholar 

  68. S. Xu, Z. Wang, Y. Gao, S. Zhang, and K. Wu, PLoS One 10, e0124826 (2015).

    Google Scholar 

  69. K. Dashtian and R. S. Zare-Dorabei, J. Colloid Interface Sci. 494, 114 (2017).

    CAS  Google Scholar 

  70. Y. Gao, S. Zhang, K. Zhao, Z. Wang, S. Xu, Z. Liang, and K. Wu, J. Rare Earths 33, 884 (2015).

    CAS  Google Scholar 

  71. H. Fakhri, A. R. Mahjoub, and H. Aghayan, Chem. Eng. Res. Des. 120, 303 (2017).

    CAS  Google Scholar 

Download references

Funding

The authors acknowledge precious support provided by the National Natural Science Fund of “Study on the Control of Catalytic Ozonation and Bromate Formation by Surface Performance Regulation of Fe–Co/Mn Based Catalysts (no. 2018033022),” and the fund of “Study on Preparation and Performance of Biomass Macromolecular Composites (no. 2017036019).”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjun Luo.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang Cai, Luo, W., Mu, J. et al. Self-Peristaltic Gel-Microspheres Based on Carboxymethyl Cellulose and Polyacrylic Acid Prepared via Inverse Suspension for Recovery Rare Earth Ions from Aqueous Solution. Polym. Sci. Ser. B 62, 522–533 (2020). https://doi.org/10.1134/S1560090420050024

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560090420050024

Navigation