Skip to main content
Log in

Polyelectrolyte Complexes of Potassium Humates and Poly(dialyldimethylammonium chloride) for Fixing Sand Soil

  • ON THE 80th ANNIVERSARY OF THE BIRTH OF A. B. ZEZIN
  • Published:
Polymer Science, Series B Aims and scope Submit manuscript

Abstract

The preparation of electrostatic complexes between a cationic polymer, poly(diallyldimethylammonium chloride), and natural polyanions, potassium humates, is described. The polycomplexes remain stable in the aqueous solution for a long time (up to 3 months) or form precipitates that can be easily resuspended when the sample is shaken. When aqueous solutions/suspensions of polycomplexes are applied on the sand surface, polymer-sand coatings (crusts) are formed, the mechanical strength of which increases with increasing content of poly(diallyldimethylammonium chloride) in the polycomplex. The greatest resistance to water (water resistance) is exhibited by crusts with a high proportion of mutually neutralized sections of both polymers. For such crusts, sand loss during watering is in the range from 0 to 2%. The developed multicomplex formulations can be used to stabilize soil and ground against water and wind erosion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. R. Lal, Land Degrad. Dev. 12, 519 (2001).

    Article  Google Scholar 

  2. A. G. Brown, S. Tooth, J. E. Bullard, D. S. Thomas, R. C. Chiverrell, A. J. Plater, and J. Wainwright, Earth Surf. Processes Landforms 42, 71 (2017).

    Article  Google Scholar 

  3. J. C. Colazo and D. Buschiazzo, Land Degrad. Dev. 26, 62 (2015).

    Article  Google Scholar 

  4. T. Guillaume, M. Damris, and Y. Kuzyakov, Global Change Biol. 21, 3548 (2015).

    Article  Google Scholar 

  5. H. Afrin, Int. J. Transp. Eng. Technol. 3 (2), 19 (2017).

    Article  Google Scholar 

  6. M. Prosdocimi, P. Tarolli, and A. Cerdà, Earth-Sci. Rev. 161, 191 (2016).

    Article  Google Scholar 

  7. L. Zhang, J. Wang, Z. Bai, and C. Lv, Catena 128, 44 (2015).

    Article  Google Scholar 

  8. W. Vannoppen, M. Vanmaercke, S. De Baets, and J. Poesen, Earth-Sci. Rev. 150, 665 (2015).

    Article  Google Scholar 

  9. K. Tian, Y. Wu, H. Zhang, D. Li, K. Nie, and S. Zhang, Land Degrad. Dev. 29, 4271 (2018).

    Article  Google Scholar 

  10. L. Yan and J. Yang, Mater. Rev. 23 (3), 51 (2009).

    Google Scholar 

  11. G. Shulga, T. Betkers, S. Vitolina, B. Neiberte, A. Verovkins, O. Anne, and A. Žukauskaitė, J. Environ. Eng. Landscape Manage. 23, 279 (2015).

    Article  Google Scholar 

  12. I. G. Panova, A. V. Sybachin, V. V. Spiridonov, K. Kydralieva, S. Jorobekova, A. B. Zezin, and A. A. Yaroslavov, Geoderma 307, 91 (2017).

    Article  CAS  Google Scholar 

  13. Y. Adachi, Paddy Water Environ. 17, 1 (2019).

    Article  Google Scholar 

  14. A. B. Zezin, S. V. Mikheikin, V. B. Rogacheva, M. F. Zansokhova, A. V. Sybachin, and A. A. Yaroslavov, Adv. Colloid Interface Sci. 226, 17 (2015).

    Article  CAS  Google Scholar 

  15. E. A. Lysenko, R. S. Bilan, and P. S. Chelushkin, Polym. Sci., Ser. C 59, 35 (2017).

    Article  CAS  Google Scholar 

  16. A. D. Kulkarni, Y. H. Vanjari, K. H. Sancheti, H. M. Patel, V. S. Belgamwar, S. J. Surana, and C. V. Pardeshi, Artif. Cells, Nanomed., Biotechnol. 44 (7), 1615 (2016).

    Article  CAS  Google Scholar 

  17. V. A. Izumrudov and A. V. Sybachin, Polym. Sci., Ser. A 48, 1098 (2006).

    Article  Google Scholar 

  18. V. V. Parashchuk and V. A. Izumrudov, Polym. Sci., Ser. A 55, 24 (2015).

    Article  Google Scholar 

  19. Y. Sun, Z. Liu, and P. Fatehi, J. Environ. Manage. 200, 275 (2017).

    Article  CAS  Google Scholar 

  20. I. V. Perminova, J. M. García-Mina, H. Knicker, and T. Miano, J. Soils Sediments 19, 2663 (2019).

    Article  Google Scholar 

  21. A. C. Garcia, L. G. A. De Souza, M. G. Pereira, R. N. Castro, J. M. García-Mina, E. Zonta, and R. L. L. Berbara, Sci. Rep. 6, 20798 (2016).

    Article  CAS  Google Scholar 

  22. B. A. G. de Melo, F. L. Motta, and M. H. A. Santana, Mater. Sci. Eng. 62, 967 (2016).

    Article  CAS  Google Scholar 

  23. I. G. Panova, A. A. Drobyazko, V. V. Spiridonov, A. V. Sybachin, K. Kydralieva, S. Jorobekova, and A. A. Yaroslavov, Land Degrad. Dev. 30, 337 (2019).

    Article  Google Scholar 

  24. D. D. Khaidapova and E. A. Pestonova, Pochvovedenie 11, 1330 (2007).

    Google Scholar 

  25. J. Liu, B. Shi, H. Jiang, H. Huang, G. Wang, T. Kamai, Eng. Geol. 117, 114 (2011).

    Article  Google Scholar 

  26. J. Liu, Y. Bai, Z. Song, Y. Lu, W. Qian, and D. Kanungo, Polymers 10 (123), 287 (2018).

    Article  Google Scholar 

  27. H. Junhao, X. Liu, and E. Thormann, Langmuir 34, 7264 (2018).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to A G. Bogdanov for his help in electron microscopy studies.

Funding

This study was supported by the Russian Foundation for Basic Research (project no. 18-29-25017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. G. Panova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panova, I.G., Khaidapova, D.D., Ilyasov, L.O. et al. Polyelectrolyte Complexes of Potassium Humates and Poly(dialyldimethylammonium chloride) for Fixing Sand Soil. Polym. Sci. Ser. B 61, 698–703 (2019). https://doi.org/10.1134/S1560090419060101

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560090419060101

Navigation