Skip to main content
Log in

Estimation of Crosslink Density of a Densely Crosslinked Polymer Taking into Account the Rigidity of a Chain Fragment Between Crosslink Junctions

  • POLYMER NETWORKS
  • Published:
Polymer Science, Series B Aims and scope Submit manuscript

Abstract

The three-dimensional densely crosslinked networks obtained from epoxy oligomers and amine crosslinking agents of different nature and molecular weight are studied. For hypothetical polymers whose units correspond to chain fragments between crosslink junctions, the values of the Kuhn segment are calculated. On the basis of these data, its average rigidity is determined taking into account the stoichiometric ratio of the fragments of the network. It is shown that allowance for the average rigidity of the network makes it possible to unambiguously relate the glass transition temperature to the average molecular weight of the chain fragment between crosslink junctions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. V. I. Irzhak, B. A. Rozenberg, and N. S. Enikolopyan, Cross-Linked Polymers: Synthesis, Structure, Properties (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

  2. J. K. Fink, Reactive Polymers. Fundamentals and Applications. A Concise Guide to Industrial Polymers (William Andrew Publ., Norwich; New York, 2005), p. 139.

    Google Scholar 

  3. M. F. Sorokin, Z. A. Kochnova, and L. G. Shode, Chemistry and Technology of Film-Forming Compounds (Khimiya, Moscow, 1989) [in Russian].

    Google Scholar 

  4. M. Kerber, V. Vinogradov, G. Golovkin, Yu. Gorbatkina, V. Kryzhanovskii, A. Kuperman, I. Simonov-Emel’yanov, V. Khaliulin, and V. Bunakov, Polymer Composite Materials. Properties, Structure, Technologies (Professiya, Moscow, 2008) [in Russian].

    Google Scholar 

  5. L. H. Sperling, Interpenetrating Polymer Networks and Related Materials (Plenum Press, New York; London, 1981).

    Book  Google Scholar 

  6. V. I. Irzhak, Topological Structure of Polymers (Izd-vo Kazanskogo Nats. Issled. Tekhnol. Univ., Kazan, 2013) [in Russian].

  7. V. I. Irzhak, Structural Kinetics of Polymer Formation (Lan’, St. Petersburg, 2015) [in Russian].

  8. Epoxy Polymers. New Materials and Innovations, Ed. by J.-P. Pascault and R. J. J. Williams (Wiley-VCH, New York, 2010).

    Google Scholar 

  9. M. Dornbusch, U. Christ, and R. Rasing, Epoxy resins (Vincentz Network GmbH., Hannover, 2016).

    Google Scholar 

  10. L. E. Nielsen, J. Macromol. Sci., Polym. Rev. 3, 69 (1969).

    CAS  Google Scholar 

  11. J. D. Ferry, Viscoelastic Properties of Polymers (Wiley, New York, 1980).

    Google Scholar 

  12. R. A. Pearson and A. F. Yee, J. Mater. Sci. 24, 2571 (1989).

    Article  CAS  Google Scholar 

  13. A. Chatterjee and J. W. Gillespie, Jr., J. Appl. Polym. Sci. 115, 665 (2010).

    Article  CAS  Google Scholar 

  14. A. A. Tager, Physics and Chemistry of Polymers (Khimiya, Moscow, 1968) [in Russian].

    Google Scholar 

  15. M. Alger, Polymer Science Dictionary (Chapman and Hall, London, 1997).

    Google Scholar 

  16. M. E. Solov’ev, T. K. Ivashkovskaya, A. B. Raukhvarger, and V. I. Irzhak, Vysokomol. Soedin., Ser. B 29, 731 (1987).

    Google Scholar 

  17. L. Banks and B. Ellis, Polymer 23, 1466 (1982).

    Article  CAS  Google Scholar 

  18. A. J. Lesser and E. Crawford, J. Appl. Polym. Sci. 66, 387 (1997).

    Article  CAS  Google Scholar 

  19. R. A. Pearson and A. F. Yee, J. Mater. Sci. 24, 2571 (1989).

    Article  CAS  Google Scholar 

  20. E. S. Zhavoronok, I. N. Senchikhin, and V. I. Roldugin, Polym. Sci., Ser. A 53, 449 (2011).

    Article  CAS  Google Scholar 

  21. V. P. Privalko and Yu. S. Lipatov, Vysokomol. Soedin., Ser. A 13, 2733 (1971).

    CAS  Google Scholar 

  22. V. G. Rostiashvili and V. I. Irzhak, Vysokomol. Soedin., Ser. B 20, 837 (1978).

    CAS  Google Scholar 

  23. V. P. Privalko and Yu. S. Lipatov, Vysokomol. Soedin., Ser. A 13, 2733 (1971).

    CAS  Google Scholar 

  24. V. M. Rudoi, O. V. Dement’eva, I. V. Yaminskii, V. M. Sukhov, M. E. Kartseva, and V. A. Ogarev, Kolloidn. Zh. 64, 823 (2002).

    Google Scholar 

  25. B.-G. Min, Z. H. Stachurski, and J. H. Hodgkin, Polymer 34, 4908 (1993).

    Article  CAS  Google Scholar 

  26. E. S. Zhavoronok, I. N. Senchikhin, E. F. Kolesnikova, A. E. Chalykh, M. R. Kiselev, and V. I. Roldugin, Polym. Sci., Ser. B 52, 235 (2010).

    Article  Google Scholar 

  27. V. P. Privalko, Molecular Structure and Properties of Polymers (Khimiya, Leningrad, 1986) [in Russian].

    Google Scholar 

  28. A. A. Tager, Physics and Chemistry of Polymers (Nauchnyi mir, Moscow, 2007) [in Russian].

  29. G. Strobl, The Physics of Polymers. Concepts for Understanding Their Structures and Behavior (Springer, Berlin, Heidelberg, New York, 2007).

  30. V. N. Tsvetkov, Rigid-Chain Polymers (Plenum, New York, 1989).

    Google Scholar 

  31. O. V. Okatova, I. N. Andreeva, I. A. Strelina, N. N. Ul’ya-nova, A. Yu. Leykin, and A. L. Rusanov, Polym. Sci., Ser. C 52, 17 (2010).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

A part of the experimental work was performed using the equipment of the Center for Collective Use Physical Methods of Research of the Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences.

We are grateful to L.N. Andreeva (Institute of Macromolecular Compounds, Russian Academy of Sciences) for online consultations in the ResearchGate system.

Funding

This work was supported by the Russian Science Foundation, project 18-79-00114.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Zhavoronok.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhavoronok, E.S., Senchikhin, I.N. Estimation of Crosslink Density of a Densely Crosslinked Polymer Taking into Account the Rigidity of a Chain Fragment Between Crosslink Junctions. Polym. Sci. Ser. B 61, 451–457 (2019). https://doi.org/10.1134/S1560090419040158

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560090419040158

Navigation