Skip to main content
Log in

Ultrasound-assisted synthesis of block copolymers of chitosan and D,L-lactide: Structure and properties

  • Modification of Polymers
  • Published:
Polymer Science, Series B Aims and scope Submit manuscript

Abstract

The block copolymers of chitosan with D,L-lactide are synthesized under UV irradiation of the homogeneous solution of the corresponding homopolymers with the yield of the main product being 96 wt %. The polyblock structure of copolymer chains, in which the size of polylactide blocks is varied in the range of (2.9–22.0) × 103 depending on the synthesis conditions, is demonstrated. The incorporation of polylactide blocks into the structure of chitosan leads to development of the material structure close to the structure of polylactide. The films of the block copolymers containing 16 wt % polylactide and having a molecular mass of its blocks of 22.0 × 103 have increased values of breaking stress (47 MPa) and ultimate strain (20%) compared to chitosan (24 MPa and 1.9%, respectively). The obtained block copolymers possess bactericidal properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. M. El-Sherbiny and N. M. El-Baz, in A Review on Bionanocomposites Based on Chitosan and Its Derivatives for Biomedical Applications, Ed. by V. K. Thakur and M. K. Thakur, (Springer, New York, 2015), Vol. 74, p. 173.

    Google Scholar 

  2. D. S. Kuznetsova, P. S. Timashev, V. N. Bagratashvili, and E. V. Zagainova, Sovrem. Tekhnol. Med. 6 (4), 201 (2014).

    Google Scholar 

  3. J. E. Bergsma, F. R. Rozema, R. R. M. Bos, G. Boering, W. C. Brujin, and A. J. Pennings, Biomaterials 16 (4), 267 (1995).

    Article  CAS  Google Scholar 

  4. R. Nanda, A. Sasmal, and P. L. Naya, Carbohydr. Res. 83 (2), 988 (2011).

    Article  CAS  Google Scholar 

  5. M. Jafarkhani, A. Fazlali, F. Moztarzadeh, and M. Mozafari, Iran Polym. J. 21, 713 (2012).

    Article  CAS  Google Scholar 

  6. Y. Cui, Y. Liu, X. Jing, P. Zhang, and X. Chen, Acta Biomater. 5 (7), 2680 (2009).

    Article  CAS  Google Scholar 

  7. L. Wu and J. Ding, Biomaterials 25 (27), 5821 (2004).

    Article  CAS  Google Scholar 

  8. L. Lao, Y. Wang, Y. Zhu, Y. Zhang, and C. Gao, J.Mater. Sci.: Mater. Med. 22 (8), 1873 (2011).

    CAS  Google Scholar 

  9. A. P. Gupta and V. Kumar, Eur. Polym. J. 43 (10), 4053 (2007).

    Article  CAS  Google Scholar 

  10. M. N. Shtil’man, Polymers for Medical and Biological Use (Akademkniga, Moscow, 2006) [in Russian].

    Google Scholar 

  11. N. E. Suyatma, A. Copinet, L. Tighzert, and V. Coma, J. Polym. Environ. 12 (1), 1 (2004).

    Article  CAS  Google Scholar 

  12. F. Croisier and C. Jérôme, Eur. Polym. J. 49 (4), 780 (2013).

    Article  CAS  Google Scholar 

  13. L. H. Lao, H. P. Tan, Y. J. Wang, and C. Y. Gao, Colloids Surf., B 66 (2), 218.

  14. L. Ma, C. Gao, Z. Mao, J. Zhou, J. Shen, X. Hu, and C. Han, Biomaterials 24 (26), 4833 (2003).

    Article  CAS  Google Scholar 

  15. S. V. Madihally and H. W. Matthew, Biomaterials 20 (12), 1133 (1999).

    Article  CAS  Google Scholar 

  16. R. A. A. Muzzarelli, F. Greco, A. Busilacchi, V. Sollazzo, and A. Gigante, Carbohydr. Polym. 89 (3), 723 (2012).

    Article  CAS  Google Scholar 

  17. A. R. C. Duarte, J. F. Mano, and R. L. Reis, Eur. Polym. J. 45 (1), 141 (2009).

    Article  CAS  Google Scholar 

  18. M. Dash, F. Chiellini, R. M. Ottenbrite, and E. Chiellini, Prog. Polym. Sci. 36 (8), 981 (2011).

    Article  CAS  Google Scholar 

  19. A. N. Ivanov, I. A. Norkin, and D. M. Puchin’yan, Tsitologiya 56 (8), 543 (2014).

    CAS  Google Scholar 

  20. Y. Wu, Y. Zheng, W. Yang, C. Wang, J. Hu, and S. Fu, Carbohydr. Polym. 59 (2), 165 (2005).

    Article  CAS  Google Scholar 

  21. G. E. Luckachan and C. K. S. Pillai, Carbohydr. Polym. 64 (2), 254 (2006).

    Article  CAS  Google Scholar 

  22. X. Qu, A. Wirse’n, and A. C. Albertsson, Polymer 41 (13), 4841 (2000).

    Article  CAS  Google Scholar 

  23. J. Li, M. Kong, X. J. Cheng, J. J. Li, W. F. Liu, and X. G. Chen, Int. J. Biol. Macromol. 49 (5), 1016 (2011).

    Article  CAS  Google Scholar 

  24. N. E. Suyatma, A. Copinet, E. Legin-Copinet, F. Fricoteaux, and V. Coma, J. Polym. Environ. 19 (1), 166 (2011).

    Article  CAS  Google Scholar 

  25. H. Feng and C.-M. Dong, Biomacromolecules 7 (11), 3069 (2006).

    Article  CAS  Google Scholar 

  26. L. Liu, A. Shi, S. Guo, Y. Fang, S. Chen, and J. Li, React. Funct. Polym. 70, 301 (2010).

    Article  CAS  Google Scholar 

  27. P. Liu, Y. Hu, Z. Fan, and S. Li, Nanosci. Nanotechnol.–Asia 2 (1), 38 (2012).

    Article  CAS  Google Scholar 

  28. B. Luo, J. Yang, J. Zhao, C. E. Hsu, J. Li, and C. Zhou, J. Appl. Polym. Sci. 125 (52), 125 (2012).

    Article  Google Scholar 

  29. L. Li, S. Ding, and C. Zhou, J. Appl. Polym. Sci. 91 (1), 274 (2004).

    Article  CAS  Google Scholar 

  30. Y. Wan, Q. Wu, S. Wang, S. Zhang, and Z. Hu, Macromol. Mater. Eng. 292 (5), 598 (2007).

    Article  CAS  Google Scholar 

  31. Y. Wan, H. Wu, A. Yu, and D. Wen, Biomacromolecules 7 (5), 1362 (2006).

    Article  CAS  Google Scholar 

  32. N. E. Suyatma, A. Copinet, L. Tighzert, and V. Coma, J. Polym. Environ. 12 (1), 1 (2004).

    Article  CAS  Google Scholar 

  33. N. E. Suyatma, A. Copinet, V. Coma, and F. Fricoteaux, J. Appl. Polym. Sci. 117 (5), 3083 (2010).

    CAS  Google Scholar 

  34. C. Chen, L. Dong, and M. K. Cheung, Eur. Polym. J. 41 (5), 958 (2005).

    Article  CAS  Google Scholar 

  35. V. M. Correlo, L. F. Boesel, M. Bhattacharya, J. F. Mano, N. M. Neves, and R. L. Reis, Mater. Sci. Eng., A 403, 1286 (2005).

    Article  Google Scholar 

  36. R. Grande and A. J. F. Carvalho, Biomacromolecules 12 (4), 907 (2011).

    Article  CAS  Google Scholar 

  37. A. Yu. Poritskaya, Yu. S. Sotnikova, T. S. Demina, and V. V. Kireev, Usp. Khim. Khim. Tekhnol. 30 (10), 79 (2016).

    Google Scholar 

  38. T. S. Demina, T. A. Akopova, L. V. Vladimirov, A. N. Zelenetskii, E. A. Markvicheva, and Ch. Grandfils, Mater. Sci. Eng. C 59, 333 (2016).

    Article  CAS  Google Scholar 

  39. T. S. Demina, L. V. Vladimirov, T. A. Akopova, and A. N. Zelenetskii, Khim. Interesakh Ustoich. Razvit. 21 (6), 631 (2013).

    CAS  Google Scholar 

  40. T. S. Demina, A. Yu. Poritskaya, A. V. Istomin, G. P. Goncharuk, T. A. Akopova, and A. N. Zelenetskii, Izv. Ufimskogo Nauch. Tsentra RAN 3 (1), 27 (2016).

    Google Scholar 

  41. T. A. Akopova, Extended Abstract of Doctoral Dissertation in Chemistry (Moscow, 2013).

    Google Scholar 

  42. N. Tchverova, P. Yunin, L. Smirnova, and I. D. Grishin, Polym. Sci., Ser. B 57 (3), 214 (2015).

    Google Scholar 

  43. A. Noshay and J. E. McGrath, Block-Copolymers–Overview and Critical Survey (Acad. Press, New York, 1977).

    Google Scholar 

  44. H. A. J. Battaerd and G. W. Tregear, Graft Copolymers (Wiley-Intersci., New York, 1967).

    Google Scholar 

  45. M. Degirmenci, H. Catalgil-Giz, and Y. Yagci, J. Polym. Sci., Part A: Polym. Chem. 42 (3), 534 (2004).

    Article  CAS  Google Scholar 

  46. R. Czechowska-Biskup, B. Rokita, S. Lotfy, P. Ulanski, and J. M. Rosiak, Carbohydr. Polym. 60 (2), 175 (2005).

    Article  CAS  Google Scholar 

  47. G. Ameta, S. Benjamin, V. Sharma, and S. Bhardwaj, Sonochemistry: a Pollution Free Pathway, Ed. by S. C. Ameta and R. Ameta (Acad. Press, New York, 2013), p. 255.

    Google Scholar 

  48. N. V. Pogodina, Vysokomol. Soedin., Ser. A 28 (2), 232 (1986).

    CAS  Google Scholar 

  49. I. L. Fedushkin, A. A. Skatova, V. A. Chudakova, G. K. Fukin, and H. Schumann, Eur. J. Inorg. Chem. 2003 (18), 3336 (2003).

    Article  Google Scholar 

  50. A. G. Morozov, I. L. Fedyushkin, and D. Ya. Aleinik, Russ. J. Appl. Chem. 89 (12), 2095 (2016).

    Article  CAS  Google Scholar 

  51. G. Swift, Acc. Chem. Res. 26, 105 (1993).

    Article  CAS  Google Scholar 

  52. R. E. Drumright and P. R. Gruber, Adv. Mater. 12, 1841 (2000).

    Article  CAS  Google Scholar 

  53. D. Bourissou, B. Martin-Vaca, and O. Dechy-Cabaret, Chem. Rev. 104, 6147 (2004).

    Article  Google Scholar 

  54. A. A. Tager, Physics and Chemistry of Polymers (Nauchnyi mir, Moscow, 2007) [in Russian].

    Google Scholar 

  55. A. Jintapattanakit, V. B. Junyaprasert, S. Mao, J. Sitterberg, U. Bakowsky, and T. Kissel, Int. J. Pharm. 342 (1–2), 240 (2007).

    Article  CAS  Google Scholar 

  56. S. Mao, U. Bakowsky, A. Jintapattanakit, and T. Kissel, J. Pharm. Sci. 95 (5), 1035 (2006).

    Article  CAS  Google Scholar 

  57. A. V. Bakulin, N. V. Gavrilenko, E. M. Chervyakovskii, V. P. Kurchenko, and V. P. Varlamov, Biotekhnologiya, No. 1, 34 (2011).

    Google Scholar 

  58. Yu. P. Ioshchenko, Extended Abstract of Candidate’s Dissertation in Technical Science (Volzhskii Politekh. Inst., Volgograd, 2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. E. Silina.

Additional information

Original Russian Text © N.E. Silina, A.G. Morozov, E.E. Gornostaeva, L.A. Smirnova, S.D. Zaytsev, 2017, published in Vysokomolekulyarnye Soedineniya, Seriya B, 2017, Vol. 59, No. 5, pp. 355–364.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silina, N.E., Morozov, A.G., Gornostaeva, E.E. et al. Ultrasound-assisted synthesis of block copolymers of chitosan and D,L-lactide: Structure and properties. Polym. Sci. Ser. B 59, 551–559 (2017). https://doi.org/10.1134/S1560090417050116

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560090417050116

Navigation