Skip to main content
Log in

Starch–polyethylene polymer–polymer composites obtained by polymerization filling: Structure and oxidative degradability

  • Composites
  • Published:
Polymer Science, Series B Aims and scope Submit manuscript

Abstract

The polymer–polymer composites bearing polyethylene and starch are obtained by polymerization filling. The polymerization of ethylene is carried out using catalyst system [TiCl4 + (С2H5)2AlCl] under mild conditions. It is found that the catalyst activity in the presence of a biopolymer is higher than that without the filler. The polyethylene matrix has a molecular mass of 1.26–1.40 M and features a melting point of 138–140°C, a high enthalpy, and a degree of crystallinity of 60–70%. Reduction in the decomposition temperature of the polymer–polymer composites and in the rate of mass loss compared to the unfilled polyethylene and biopolymers is detected. The stress-strain characteristics of the polymer matrix are improved; in particular, the elastic modulus and relative elongation at break are increased. The photooxidative degradation of the composites under the action of sunlight and UV radiation is studied. According to the data of IR spectroscopy, the polymer–polymer composites possess resistance to photooxidative aging 2–3 times lower than the unfilled polyethylene. The polymer–polymer composites subjected to UV radiation reveal a high intensity of growth of microorganisms: the degree of biofouling is up to four points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. C. Albertson and S. Karlsson, in Chemistry and Technology of Biodegradable Polymers, Ed. by G. J. L. Griffin (Blackie, Glasgow, 1994).

    Google Scholar 

  2. V. A. Vasnev, Polym. Sci., Ser. B 39 (11–12), 474 (1997).

    Google Scholar 

  3. S. Z. Rogovina, A. V. Grachev, K. V. Aleksanyan, and E. V. Prut, Russ. J. Bioorg. Chem. 37 (7), 791 (2011).

    Article  CAS  Google Scholar 

  4. S. Z. Rogovina, S. M. Lomakin, K. V. Aleksanyan, and E. V. Prut, Russ. J. Phys. Chem. B 6 (3), 416 (2012).

    Article  CAS  Google Scholar 

  5. A. I. Suvorova, I. S. Tyukova, and E. I. Trufanova, Russ. Chem. Rev. 69 (5), 451 (2000).

    Article  CAS  Google Scholar 

  6. M. Kaseem, K. Hamad, and F. Deri, Polym. Sci., Ser. A 54 (2), 165 (2012).

    Article  CAS  Google Scholar 

  7. F. S. D’yachkovskii and L. A. Novokshonova, Russ. Chem. Rev. 53, 117 (1984).

    Article  Google Scholar 

  8. L. A. Novokshonova, P. N. Brevnov, V. G. Grinev, S.N. Chvalun, S. M. Lomakin, and A. N. Shchegolikhin, Nanotechnol. Russ. 3 (5–6), 330 (2008).

    Article  Google Scholar 

  9. A. D. Pomogailo, Polymer Immobilized Metallocomplex Catalysts (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  10. E. M. Khar’kova, D. I. Mendeleev, Y. M. Korolev, B. F. Shklyaruk, V. A. Gerasin, and E. M. Antipov, Polym. Sci., Ser. A 55 (8), 493 (2013).

    Article  Google Scholar 

  11. E. M. Khar’kova, D. I. Mendeleev, V. A. Aulov, B. F. Shklyaruk, V. A. Gerasin, A. A. Piryazev, and A. E. Antipov, Polym. Sci., Ser. A 56 (1), 72 (2014).

    Article  Google Scholar 

  12. A. Tidjani, R. Arnaud, and A. Dasilva, J. Appl. Polym. Sci. 47 (2), 211 (1993).

    Article  CAS  Google Scholar 

  13. D. Hadad, S. Geresh, and A. Sivan, J. Appl. Microbiol. 98 (5), 109 (2005).

    Article  Google Scholar 

  14. A. Corti, S. Muniyasamy, M. Vitali, S. H. Imam, and E. Chiellini, Polym. Degrad. Stab. 95 (6), 1106 (2010).

    Article  CAS  Google Scholar 

  15. F. S. D’yachkovskii, A. D. Pomogailo, and A. N. Ponomarev, in Complex Organometallic Catalysts of Olefin Polymerization. Collection (Chernogolovka, Bukinist, 1978), No. 7, p. 46 [in Russian].

    Google Scholar 

  16. A. D. Pomogailo, in Complex Organometallic Catalysts of Olefin Polymerization. Collection (Chernogolovka, Bukinist, 1991), No. 11, p. 116 [in Russian].

    Google Scholar 

  17. A. D. Pomogailo, Russ. Chem. Rev 71 (1), 1 (2002).

    Article  CAS  Google Scholar 

  18. S. Z. Rogovina, K. V. Aleksanyan, D. D. Novikov, E. V. Prut, and A. V. Rebrov, Polym. Sci., Ser. A 51 (5), 554 (2009).

    Article  Google Scholar 

  19. A. Ammala, S. Bateman, K. Dean, and E. Petinakis, Prog. Polym. Sci. 36 (8), 1015 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Khar’kova.

Additional information

Original Russian Text © E.M. Khar’kova, D.I. Mendeleev, M.A. Guseva, B.F. Shklyaruk, V.A. Gerasin, E.M. Antipov, 2017, published in Vysokomolekulyarnye Soedineniya, Seriya B, 2017, Vol. 59, No. 5, pp. 393–401.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khar’kova, E.M., Mendeleev, D.I., Guseva, M.A. et al. Starch–polyethylene polymer–polymer composites obtained by polymerization filling: Structure and oxidative degradability. Polym. Sci. Ser. B 59, 601–609 (2017). https://doi.org/10.1134/S1560090417050050

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560090417050050

Navigation