Skip to main content
Log in

Comparison of oxidation polymerization methods of thiophene in aqueous medium and its mechanism

  • Polymerization
  • Published:
Polymer Science, Series B Aims and scope Submit manuscript

Abstract

Precipitation method of oxidation polymerization for preparing polythiophene was carried out as well as dispersion and emulsion methods in aqueous medium by using (NH4)2S2O8 and CuCl2 as the oxidant and catalyst, respectively. In precipitation method, ethanol was served as an auxiliary solvent to water. The effective conjugated length (ECL) of the obtained polythiophene was demonstrated to be evaluated by the UV absorption spectrum. The ECL of the polythiophene gradually increases with the rise of the content of ethanol in the mixed solvent in precipitation polymerization, and it was higher comparing to the ECL of the product prepared by aqueous dispersion or emulsion method. An electron transition mechanism of the oxidation polymerization of thiophene was suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Destri, U. Giovanella, A. Fazio, W. Porzio, B. Gabriele, and G. Zotti, Org. Electron. 3, 149 (2002).

    Article  CAS  Google Scholar 

  2. S.-H. Ahn, M.-Z. Czae, E.-R. Kim, and H. Lee, Macromolecules 34, 2522 (2001).

    Article  CAS  Google Scholar 

  3. F. Bloisi, A. Cassinese, R. Papa, L. Vicari, and V. Califano, Thin Solid Films 516, 1594 (2008).

    Article  CAS  Google Scholar 

  4. K. Takechi, T. Shiga, T. Motohiro, T. Akiyama, S. Yamada, H. Nakayama, and K. Kohama, Sol. Energy Mater. Sol. Cells 90, 1322 (2006).

    Article  CAS  Google Scholar 

  5. J. A. Mikroyannidis, M. M. Stylianakis, Q. Dong, Y. Zhou, and W. Tian, Synth. Met. 159, 1471 (2009).

    Article  CAS  Google Scholar 

  6. J. Joo, D. H. Park, M. Y. Jeong, Y. B. Lee, H. S. Kim, W. J. Choi, Q. H. Park, H. J. Kim, D. C. Kim, and J. Kim, Adv. Mater. 19, 2824 (2007).

    Article  CAS  Google Scholar 

  7. B. C. Thompson and J. M. J. Fréchet, Angew. Chem., Int. Ed. 47, 58 (2008).

    Article  CAS  Google Scholar 

  8. S. Gunes, H. Neugebauer, and N. S. Sariciftci, Chem. Rev. 107, 1324 (2007).

    Article  Google Scholar 

  9. T. Yamamoto, K. Sanechika, and A. Yamamoto, J. Polym. Sci., Polym. Lett. Ed. 18, 9 (1980).

    Article  CAS  Google Scholar 

  10. R. J. Waltman, J. Bargon, and A. F. Diaz, J. Phys. Chem. 87, 1459 (1983).

    Article  CAS  Google Scholar 

  11. J. W.-P. Lin and L. P. Dudek, J. Polym. Sci., Part A-1: Polym. Chem. 18, 2869 (1980).

    CAS  Google Scholar 

  12. K. Yoshino, S. Hayashi, and R.-I. Sugimoto, Jpn. J. Appl. Phys. 23, L899 (1984).

    Article  Google Scholar 

  13. S. J. Lee, J. M. Lee, I. W. Cheong, H. Lee, and J. H. Kim, J. Polym. Sci., Part A: Polym. Chem. 46, 2097 (2008).

    Article  CAS  Google Scholar 

  14. S. J. Lee, J. M. Lee, H.-Z. Cho, W. G. Koh, I. W. Cheong, and J. H. Kim, Macromolecules 43, 2484 (2010).

    Article  CAS  Google Scholar 

  15. R. C. Liu and Z. P. Liu, Chin. Sci. Bull. 54, 2028 (2009).

    CAS  Google Scholar 

  16. Z. Wang, Y. Y. Wang, D. Xu, E. S. W. Kong, and Y. F. Zhang, Synth. Met. 160, 921 (2010).

    Article  CAS  Google Scholar 

  17. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Revision A. 02 (Gaussian, Inc., Wallingford CT, 2009).

  18. A. D. Becke, J. Chem. Phys. 98, 5648 (1993).

    Article  CAS  Google Scholar 

  19. A. D. Becke, Phys. Rev. A 38, 3098 (1988).

    Article  CAS  Google Scholar 

  20. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).

    Article  CAS  Google Scholar 

  21. S. C. Pop and T. A. Beu, Comput. Theor. Chem. 995, 66 (2012).

    Article  CAS  Google Scholar 

  22. T. R. Hebner and J. C. Sturm, Appl. Phys. Lett. 73, 1775 (1998).

    Article  CAS  Google Scholar 

  23. Y. Yang, S.-C. Chang, J. Bharathan, and J. Liu, J. Mater. Sci.: Mater. Electron. 11, 89 (2000).

    CAS  Google Scholar 

  24. K. Mori, T. Ning, M. Ichikawa, T. Koyama, and Y. Taniguchi, Jpn. J. Appl. Phys. 39, L942 (2000).

    Article  CAS  Google Scholar 

  25. M. Sangermano, F. Sordo, A. Chiolerio, and Y. Yagci, Polymer 54, 2077 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinfeng Liu.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, R., Wang, S., Zhao, K. et al. Comparison of oxidation polymerization methods of thiophene in aqueous medium and its mechanism. Polym. Sci. Ser. B 59, 16–27 (2017). https://doi.org/10.1134/S1560090417010134

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560090417010134

Navigation