Skip to main content
Log in

The using of thermal analysis methods for the construction of isothermal transformation diagrams of thermosets

  • Synthesis
  • Published:
Polymer Science, Series B Aims and scope Submit manuscript

Abstract

The article reviews the using of thermal analysis methods and mathematic modeling of kinetics of chemical processes for the creation of isothermal transformation diagrams of thermosetting binders. Differential scanning calorimetry (DSC), temperature modulated DSC, gel-timer and thermogravimetry are used for the construction of isothermal transformation diagrams with vitrification and gelation curves, areas of thermal stability and post-curing. The Time-Temperature-Transformation diagrams obtained can be used for optimization of time-temperature schedules for polymer matrix composites fabrication at the laboratory scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. N. Kablov, Aviats. Mater. Tekhnol., No. S, 7 (2012).

  2. A. B. Strong, Fundamentals of Composites Manufacturing: Materials, Methods and Applications (SME, Dearborn, 2008).

    Google Scholar 

  3. E. N. Kablov, “Tendencies and Guides of Innovative Development of Russia, ” in Collection of Scientific and Informative Materials (Vserossiiskii Inst. Aviats. Mater._(VIAM), Moscow, 2015) [in Russian].

    Google Scholar 

  4. E. Ya. Beider, G. N. Petrova, T. F. Izotova, and E. V. Gureeva, Trudy VIAM, No. 11, 1 (2013).

    Google Scholar 

  5. R. R. Mukhametov, K. R. Akhmadieva, L. V. Chursova, and D. I. Kogan, Aviats. Mater. Tekhnol., No. 2, 38 (2011).

    Google Scholar 

  6. Yu. I. Merkulova and R. R. Mukhametov, Aviats. Mater. Tekhnol., No. 1, 39 (2014).

    Google Scholar 

  7. L. L. Krasnov, Z. V. Kirina, and O. A. Eliseev, Trudy VIAM, No. 8, 5 (2014). doi 10.18577/2307-6046-2014-0-8-5-5

    Article  Google Scholar 

  8. V. G. Zheleznyak, R. R. Mukhametov, and L. V. Chursova, Aviats. Mater. Tekhnol., No. S2, 58 (2013).

    Google Scholar 

  9. M. A. Guseva, Aviats. Mater. Tekhnol., No. 2, 45 (2015).

    Google Scholar 

  10. L. Núñez, F. Fraga, M. R. Núñez, and M. Villanueva, J. Appl. Polym. Sci. 70, 1931 (1998).

    Article  Google Scholar 

  11. B. A. Rozenberg, Ross. Khim. Zh. 55 (5–6), 23 (2001).

    Google Scholar 

  12. J. P. Pascault, H. Sautereau, and J. Verdu, Thermosetting Rolymers (Marcel Dekker AG, New York, 2002).

    Book  Google Scholar 

  13. S. M. Sabzevari, S. Alavi-Soltani, H. Koushyar, and B. Minaie, in Procedings of 41 International SAMPE Technical Conference, Wichita, USA, 2009 (Wichita, USA, 2009), p.12.

    Google Scholar 

  14. J. D. Menczel and R. B. Prime, Thermal Analysis of Polymers: Fundamentals and Applications (Wiley, Hoboke, 2009).

    Book  Google Scholar 

  15. S. Swier and B. van Mele, Polymer 44 (9), 2689 (2003).

    Article  CAS  Google Scholar 

  16. E. T. Gordon, PhD Thesis (Durham Univ., Durham, 2003).

    Google Scholar 

  17. M. G. González, J. C. Cabanelas, and J. Baselga, in Infrared Spectroscopy—Materials Science, Engineering and Technology, Ed. by T. Theophanides (InTech, New York, 2012).

  18. X.-M. Xie and H. Yang, Mater. Des. 22 (1), 7 (2001).

    Article  Google Scholar 

  19. I. Martinez, M. D. Martin, A. Eceiza, P. Oyanguren, and I. Mondragon, Polymer 41, 1027 (2000).

    Article  CAS  Google Scholar 

  20. C. L. Beyler and M. M. Hirschler, in SFPE Handbook of Fire Protection Engineering, Ed. by J. DiNenno Philip (National Fire Protect Assoc., Inc., Quincy, 2002).

  21. P. M. Visakh and Y. Arao, Thermal Degradation of Polymer Blends, Composites and Nanocomposites (Springer Int. Publ., Switzeland, 2015).

    Book  Google Scholar 

  22. J. B. Enns and J. K. Gillham, J. Appl. Polym. Sci. 28 (8), 2567 (1983).

    Article  CAS  Google Scholar 

  23. M. A. Khaskov, Russ. J. Appl. Chem. 89 (4), 622 (2016).

    Article  CAS  Google Scholar 

  24. E. S. Davenport and E. C. Bain, Trans. Am. Inst. Min., Metall. Pet. Eng 90, 117 (1930).

    Google Scholar 

  25. K. P. Menard, Dynamic Mechanical Analysis (Taylor & Francis Gr., New York, 2008).

    Book  Google Scholar 

  26. G. Bogoeva-Gaceva and A. Bužarovska, Maced. J. Chem. Chem. Eng. 32 (2), 337 (2013).

    CAS  Google Scholar 

  27. S. Vyazovkin, K. Chrissafis, M. L. Di. Lorenzo, N. Koga, M. Pijolat, B. Roduit, N. Sbirrazzuoli, and J. J. Suñol, Thermochim. Acta 590, 1 (2014).

    Article  CAS  Google Scholar 

  28. M. A. Khaskov, Fibre Chem. 47 (1), 24 (2015).

    Article  CAS  Google Scholar 

  29. M. N. D. Shohor, N. Y. Yuhana, M. K. M. Dat, and R. Othman, Int._J. Appl. Eng. Res. 11 (5), 3075 (2016).

    Google Scholar 

  30. M. A. Khaskov, K. R. Akhmadieva, A. N. Kudryavtseva, and T. A. Grebeneva, Komp. Nanostr. 8 (2), 120 (2016).

    Google Scholar 

  31. J. Wang, M.-P. G. Laborie, and M. P. Wolcott, Thermochim. Acta 439, 68 (2005).

    Article  CAS  Google Scholar 

  32. M. Jovicic, R. Radicevic, J. Pavlicevic, and O. Bera, Chem. Ind. Chem. Eng. Q. 19 (2), 253 (2013).

    Article  CAS  Google Scholar 

  33. S. Y. Eriskin, F. Ç. Telli, Y. Yildirim, and Y. Salman, J. Chem. 2014, 6 (2014).

    Article  Google Scholar 

  34. A. I. Lesnikovich and S. V. Levchik, J. Therm. Anal. 27 (1), 89 (1983).

    Article  CAS  Google Scholar 

  35. M. A. Khaskov, Russ. J. Appl. Chem. 57 (3), 336 (2014).

    Article  Google Scholar 

  36. A. Belmonte, F. Dabritz, X. Ramis, A. Serra, B. Voit, and X. Fernández-Francos, J. Polym. Sci., Polym. Phys. Ed. 52, 1227 (2014).

    Article  CAS  Google Scholar 

  37. X. Sheng, M. Akinc, and M. R. Kessler, J. Therm. Anal. Calorim. 93 (1), 77 (2008).

    Article  CAS  Google Scholar 

  38. A. Aktas, L. Krishnan, B. Kandola, S. W. Boyd, and R. A. Shenoi, J. Compos. Mater. 49 (20), 2529 (2015).

    Article  CAS  Google Scholar 

  39. X.-Y. He, J. Wang, Y.-D. Wang, C.-J. Liu, W.-B. Liu, and L. Yang, Eur. Polym. J. 49, 2759 (2013).

    Article  CAS  Google Scholar 

  40. M. S. Chandran, M. Krishna, S. Rai, M. S. Krupashankara, and K. Salini, ISRN Polym. Sci. 2012, 8 (2012).

    Google Scholar 

  41. G. Höhne, W. F. Hemminger, and H.-J. Flammersheim, Differential Scanning Calorimetry (Springer Verlag, Berlin; Heidelberg, 2003).

    Book  Google Scholar 

  42. M. A. Khaskov, T. A. Grebeneva, and A. N. Babin, Komp. Nanostr. 6 (1), 49 (2014).

    CAS  Google Scholar 

  43. W. Stark, M. Jaunich, and J. McHugh, Polym. Test. 32, 1261 (2013).

    Article  CAS  Google Scholar 

  44. G. R. Saad and A. F. S. Eldin, J. Therm. Anal. Calorim. 110, 1425 (2012).

    Article  CAS  Google Scholar 

  45. H.-J. Flammersheim and J. R. Opfermann, Macromol. Mater. Eng. 286 (3), 143 (2001).

    Article  CAS  Google Scholar 

  46. M. Williams, R. F. Landel, and J. D. Ferry, J. Am. Chem. Soc. 77 (14), 3701 (1955).

    Article  CAS  Google Scholar 

  47. R.-M. Wang, S.-R. Zheng, and Y. G. Zheng, Polymer Matrix Composites and Technology (Woodhead Publ., Philadelphia, 2011).

    Book  Google Scholar 

  48. E. N. Kablov, S. V. Kondrashov, and G. Y. Yurkov, Nanotechnol. Russ. 8 (3–4), 163 (2013).

    Article  Google Scholar 

  49. L. C. Chan, H. Nae, and J. K. Gillham, J. Appl. Polym. Sci. 29 (11), 3307 (1984).

    Article  CAS  Google Scholar 

  50. B. Bilyeu, W. Brostow, and K. P. Menard, Polym. Compos. 23 (6), 1111 (2002).

    Article  CAS  Google Scholar 

  51. M. Cassettari, F. Papucci, G. Salvetti, E. Tombari, S. Veronesi, and G. P. Johari, Rev. Sci. Instrum. 84 (4), 1076 (1993).

    Article  Google Scholar 

  52. M. Mravljak and M. Šernek, Drvna Ind. 62 (1), 19 (2011).

    Article  Google Scholar 

  53. M. C. Kazilas, PhD Thesis (Cranfield Univ., Cranfield, 2003).

    Google Scholar 

  54. F. Lionetto and A. Maffezzoli, Mater. Des. 6, 3783 (2013).

    Article  CAS  Google Scholar 

  55. A. Cadenato, J. M. Salla, X. Ramis, J. M. Morancho, L. M. Marroyo, and J. L. Martin, J. Therm. Anal. 49, 269 (1997).

    Article  CAS  Google Scholar 

  56. J. Gao, L. Li, Y. Deng, Z. Gao, C. Xu, and M. Zhang, J. Therm. Anal. 49, 303 (1997).

    Article  CAS  Google Scholar 

  57. L. Núñez-Regueira, C. A. Gracia-Fernández, and S. Gómez-Barreiro, Polymer 46, 5979 (2005).

    Article  Google Scholar 

  58. S. Swier and B. van Mele, Polymer 44, 6789 (2003).

    Article  CAS  Google Scholar 

  59. H. E. H. Meijer, R. W. Venderbosch, J. G. P. Goossens, and P. J. Lemstra, High Perform. Polym. 8 (1), 133 (1996).

    Article  CAS  Google Scholar 

  60. Y. Liu, J. Appl. Polym. Sci. 127 (5), 3279 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Khaskov.

Additional information

Original Russian Text © M.A. Khaskov, 2017, published in Vysokomolekulyarnye Soedineniya, Seriya B, 2017, Vol. 59, No. 1, pp. 37–48.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khaskov, M.A. The using of thermal analysis methods for the construction of isothermal transformation diagrams of thermosets. Polym. Sci. Ser. B 59, 51–61 (2017). https://doi.org/10.1134/S1560090417010080

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560090417010080

Navigation