Polymer Science Series B

, Volume 58, Issue 4, pp 411–420 | Cite as

Chemoenzymatic polymerization of hydrazone functionalized phenol

  • Irfan Isci
  • Ersen Gokturk
  • Ersen Turac
  • Ertugrul Sahmetlioglu
Polycondensation

Abstract

Hydrazone substituted oligophenol was synthesized via enzymatic oxidative polymerization of (E)-2-((2-phenylhydrazono)methyl)phenol. Enzymatic polymerization catalyzed by Horseradish peroxidase (HRP) enzyme and H2O2 oxidizer yielded oligophenol with hydrazone functionality on the side-chain. Effects of various factors including solvent system, reaction pH and temperature on the polymerization were studied. Optimum polymerization conditions with the highest yield (84%) and molecular weight (Mn = 8 × 103, DP ≈ 37, PDI = 1.11) was achieved using MeOH/pH 6.0 buffer (1: 1 vol %) at 25°C in 24 h under air. Synthesized oligomer was characterized by 1H and 13C NMR, FTIR, UV–Vis spectroscopy, GPC, cyclic voltammetry and thermogravimetric analyses. The polymerization involved hydrogen elimination from the monomer, and terminal units of the oligomer structure consisted of phenolic hydroxyl (–OH) end groups. The oligomer backbone possessed phenylene and oxyphenylene repeat units. The resulting oligomer was completely soluble in common organic solvents. The oligomer was thermally robust and exhibited 5% mass loss at 375°C and 50% mass loss at 440°C.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. C. Vietch, Phytochemistry 65, 249 (2004).CrossRefGoogle Scholar
  2. 2.
    J. S. Dordick, M. A. Marletta, and A. M. Klibanov, Biotechnol. Bioeng. 30 (1), 31 (1987).CrossRefGoogle Scholar
  3. 3.
    H. Tonami, H. Uyama, S. Kobayashi, K. Rettig, and H. Ritter, Macromol. Chem. Phys. 200 (9), 1998 (1999).CrossRefGoogle Scholar
  4. 4.
    E. Turac and E. Sahmetlioglu, Synth. Met. 160 (1–2), 169 (2010).CrossRefGoogle Scholar
  5. 5.
    C. Goretzki and H. Ritter, Macromol. Chem. Phys. 199, 1019 (1998).CrossRefGoogle Scholar
  6. 6.
    H. Uyama, H. Kurioka, J. Sugihara, I. Komatsu, and S. Kobayashi, J. Polym. Sci., Part A: Polym. Chem. 35 (8), 1453 (1997).CrossRefGoogle Scholar
  7. 7.
    H. Uyama and S. Kobayashi, J. Mol. Catal. B: Enzym. 19 (20), 117 (2002).CrossRefGoogle Scholar
  8. 8.
    H. Uyama, C. Lohavisavapanich, R. Ikedia, and S. Kobayashi, Macromolecules 31, 554 (1998).CrossRefGoogle Scholar
  9. 9.
    M. R. Nabid and A. A. Entezami, Eur. Polym. J. 39, 1169 (2003).CrossRefGoogle Scholar
  10. 10.
    M. R. Nabid and A. A. Entezami, Iran. Polym. J. 12 (5), 401 (2003).Google Scholar
  11. 11.
    S. Moulay, C. R. Chim. 12, 577 (2009).CrossRefGoogle Scholar
  12. 12.
    N. V. Pradeep, A. Anupama, and U. S. Hampannavar, J. Environ. Earth Sci. 2 (1), 105 (2012).Google Scholar
  13. 13.
    A. V. Narayan and A. Pushpa, J. Environ. Res. Dev. 7 (2), 724 (2012).Google Scholar
  14. 14.
    X. Su and I. Aprahamian, Chem. Soc. Rev. 43, 1963 (2014).CrossRefGoogle Scholar
  15. 15.
    R. P. Brinkhuis, T. R. Visser, F. P. J. T. Rutjes, and J. C. M. van Hest, Polym. Chem. 2, 550 (2011).CrossRefGoogle Scholar
  16. 16.
    Z. Gu, Bioinspired and Biomimetic Polymer Systems for Drug and Gene Delivery (Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim, 2014).CrossRefGoogle Scholar
  17. 17.
    H. Mart, M. Sacak, H. Yuruk, E. Sahmetlíoğlu, and A. R. Vílayetoglu, J. Polym. Sci., Part A: Polym. Chem. 42 (5), 1120 (2004).CrossRefGoogle Scholar
  18. 18.
    E. Sahmetlioglu, H. Mart, H. Yuruk, and Y. Surme, Chem. Pap. 60 (1), 65 (2006).CrossRefGoogle Scholar
  19. 19.
    J. N. Shan, L. Y. Han, F. L. Bai, and S. K. Cao, Polym. Adv. Technol. 14, 330 (2003).CrossRefGoogle Scholar
  20. 20.
    M. A. Khan, S. Akhtar, and K. Shahid, Int. J. Pharm. Sci. Rev. Res. 28 (1), 147 (2014).Google Scholar
  21. 21.
    A. Kocak, A. Kumbul, E. Gokturk, and E. Sahmetlioglu, Polym. Bull. 73 (1), 163 (2016).CrossRefGoogle Scholar
  22. 22.
    W. Liu, S. Bian, L. Li, L. Samuelson, J. Kumar, and S. Tripathy, Chem Mater. 12 (6), 1577 (2000).CrossRefGoogle Scholar
  23. 23.
    S. Kobayashi and H. Higashimura, Prog. Polym. Sci. 28, 1015 (2003).CrossRefGoogle Scholar
  24. 24.
    N. Mita, S.-I. Tawaki, H. Uyama, and S. Kobayashi, Macromol. Biosci. 2 (3), 127 (2002).CrossRefGoogle Scholar
  25. 25.
    R. Ikeda, J. Sugihara, H. Uyama, and S. Kobayashi, Polym. Int. 47 (3), 295 (1998).CrossRefGoogle Scholar
  26. 26.
    K. Zheng, L. Zhang, Y. Gao, Y. Wu, W. Zhao, and Y. Cui, J. Appl. Polym. Sci. 132 (12), (2015).Google Scholar
  27. 27.
    M. Ghoul and L. Chebil, Enzymatic Polymerization of Phenolic Compounds by Oxidoreductases (Springer Netherlands, 2012).CrossRefGoogle Scholar
  28. 28.
    G. Adembri, P. Sarti-Fantoni, and E. Belgodere, Tetrahedron 22, 3149 (1966).CrossRefGoogle Scholar
  29. 29.
    R. L. Hinman, J. Org. Chem. 25 (10), 1775 (1960).CrossRefGoogle Scholar
  30. 30.
    P. Wagner, P.-H. Aubert, L. Lutsen, and D. Vanderzande, Electrochem. Commun. 4, 912 (2002).CrossRefGoogle Scholar
  31. 31.
    Y. N. Kupriyanovich, B. G. Sukhov, S. A. Medvedeva, A. I. Mikhaleva, T. I. Vakul’skaya, G. F. Myachina, and B. A. Trofimov, Mendeleev Commun. 18 (1), 56 (2008).CrossRefGoogle Scholar
  32. 32.
    E. Turac, Y. Surme, E. Sahmetlioglu, R. Varol, I. Narin, and L. Toppare, J. Appl. Polym. Sci. 110, 564 (2008).CrossRefGoogle Scholar
  33. 33.
    P. Chandrasekhar, Conducting Polymers, Fundamentals and Applications: A Practical Approach (Kluwer Academic Publishers, Norwell, 1999).CrossRefGoogle Scholar
  34. 34.
    T. A. Skotheim, R. L. Elsenbaumer, and J. R. Reynolds, Handbook of Conducting Polymers, 2nd ed. (Marcel Dekker Inc., New York, 1998).Google Scholar
  35. 35.
    M. Ak, V. Gancheva, L. Terlemezyan, C. Tanyeli, and L. Toppare, Eur. Polym. J. 44, 2567 (2008).CrossRefGoogle Scholar
  36. 36.
    K. Saranya, Md. Rameez, and A. Subramania, Eur. Polym. J. 66, 207 (2015).CrossRefGoogle Scholar
  37. 37.
    A. S. Abd-El-Aziz, S. S. Dalgakiran, and L. Bichler, Eur. Polym. J. 48, 1901 (2012).CrossRefGoogle Scholar
  38. 38.
    E. Turac, E. Sahmetlioglu, A. Demircan, and L. Toppare, J. Appl. Polym. Sci. 126, 808 (2012).CrossRefGoogle Scholar
  39. 39.
    E. Turaç, M. Ak, E. Sahmetlioglu, M. K. Sener, and M. A. Kaya, Russ. J. Gen. Chem. 81 (12), 2510 (2011).CrossRefGoogle Scholar
  40. 40.
    A. Kumbul, E. Gokturk, E. Turac, and E. Sahmetlioglu, Polym. Adv. Technol. 26 (9), 1123 (2015).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • Irfan Isci
    • 1
  • Ersen Gokturk
    • 2
  • Ersen Turac
    • 1
  • Ertugrul Sahmetlioglu
    • 3
    • 4
  1. 1.Department of ChemistryNigde UniversityNigdeTurkey
  2. 2.Department of ChemistryMustafa Kemal UniversityHatayTurkey
  3. 3.Nanotechnology Research Center (ERNAM)Erciyes UniversityKayseriTurkey
  4. 4.Department of Chemistry, M. Çıkrıkçıoğlu Vocational CollegeErciyes UniversityKayseriTurkey

Personalised recommendations