Skip to main content
Log in

Microwave-assisted synthesis of poly(urea-formaldehyde)/lauryl alcohol phase change energy storage microcapsules

  • Functional Polymers
  • Published:
Polymer Science Series B Aims and scope Submit manuscript

Abstract

In this study, lauryl alcohol suitable for thermal energy storage applications was microencapsulated in a poly(urea-formaldehyde) shell. The microcapsules were prepared by microwave-assisted in situ polymerization. The morphology and particle size of the poly(urea-formaldehyde)/lauryl alcohol phase change energy storage microcapsules(UF/LA PCESMs) were analyzed using transmission electron microscopy, scanning electron microscopy, atomic force microscopy and dynamic light scattering. The latent heat storage capacities of lauryl alcohol and UF/LA PCESMs were determined using differential scanning calorimetry. The chemical composition of the microcapsules was characterized using Fourier transform infrared spectroscopy. All of the results show that UF/LA PCESMs were synthesized successfully and that the latent heat storage capacity and encapsulation efficiency were 156.0 J/g and 75.0%, respectively, and the diameter of each microcapsule was around 150 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Gil, M. Medrano, I. Martorell, A. Lazaro, P. Dolado, B. Zalba, and L. F. Cabeza, Renewable Sustainable Energy Rev. 14, 31 (2010).

    Article  CAS  Google Scholar 

  2. A. Sharma, V. V. Tyagi, C. R. Chen, and D. Buddhi, Renewable Sustainable Energy Rev. 13, 318 (2009).

    Article  CAS  Google Scholar 

  3. E. Fallahi, M. Barmar, and M. H. Kish, Iran. Polym. J. 19, 277 (2010).

    CAS  Google Scholar 

  4. Y. Zhao, W. Zhang, L. Liao, W. Li, and Y. Xin, Adv. Sci. Lett. 4, 933 (2011).

    Article  CAS  Google Scholar 

  5. H. Ye and X. S. Ge, Sol. Energy Mater. Sol. Cells 64, 37 (2000).

    Article  Google Scholar 

  6. Z. G. Zhang and N. Zhang, J. Peng, Appl. Energy 91, 426 (2012).

    Article  CAS  Google Scholar 

  7. G. Fang, Z. Chen, and H. Li, Chem. Eng. J. 163, 154 (2010).

    Article  CAS  Google Scholar 

  8. Y. Taguchi, H. Yokoyama, H. Kado, and M. Tanaka, Colloids Surf. A 301, 41 (2007).

    Article  CAS  Google Scholar 

  9. L. Sanchez-Silva, M. Carmona, A. de Lucas, P. Sanchez, and J. F. Rodriguez, J. Microencapsulation 27, 583 (2010).

    Article  CAS  Google Scholar 

  10. L. Sanchez-Silva, J. F. Rodriguez, A. Romero, A. M. Borreguero, M. Carmona, and P. Sanchez, Chem. Eng. J. 157, 216 (2010).

    Article  CAS  Google Scholar 

  11. M. You, X. Wang, X. Zhang, L. Zhang, and J. Wang, J. Polym. Res. 18, 49 (2011).

    Article  CAS  Google Scholar 

  12. S. Alay, F. Gode, and C. Alkan, J. Appl. Polym. Sci. 120, 2821 (2011).

    Article  CAS  Google Scholar 

  13. S. Lone, H. M. Lee, G. M. Kim, W.-G. Koh, and I. W. Cheong, Colloids Surf. A 422, 61 (2013).

    Article  CAS  Google Scholar 

  14. F. Khakzad, Z. Alinejad, A. R. Shirin-Abadi, M. Ghasemi, and A. R. Mahdavian, Colloid Polym. Sci. 292, 355 (2014).

    Article  CAS  Google Scholar 

  15. J. Wei, Z. Li, L. Liu, and X. Liu, J. Appl. Polym. Sci. 127, 4588 (2013).

    Article  CAS  Google Scholar 

  16. Z. Chen, J. Wang, F. Yu, Z. Zhang, and X. Gao, J. Mater. Chem. A 3, 11624 (2015).

    Article  CAS  Google Scholar 

  17. Y. Ma, J. Zong, W. Li, L. Chen, X. Tang, N. Han, J. Wang, and X. Zhang, Energy 87, 86 (2015).

    Article  CAS  Google Scholar 

  18. C. Liu, Z. Rao, J. Zhao, Y. Huo, and Y. Li, Nano Energy 13, 814 (2015).

    Article  CAS  Google Scholar 

  19. A. D. Vilesov, O. M. Suvorova, V. E. Yudin, N. N. Saprykina, M. S. Vilesova, and R. P. Stankevich, Polym. Sci., Ser. B 56, 512 (2014).

    CAS  Google Scholar 

  20. Y. Konuklu, M. Unal, and H. O. Paksoy, Sol. Energy Mater. Sol. Cells B 120, 536 (2014).

    Article  CAS  Google Scholar 

  21. H. Wang, J. P. Wang, X. Wang, W. Li, and X. Zhang, Ind. Eng. Chem. Res. 52, 14706 (2013).

    Article  CAS  Google Scholar 

  22. D. Platte, U. Helbig, R. Houbertz, and G. Sextl, Macromol. Mater. Eng. 298, 67 (2013).

    Article  CAS  Google Scholar 

  23. Z. H. Chen, F. Yu, X. R. Zeng, and Z. G. Zhang, Appl. Energy 91, 7 (2012).

    Article  CAS  Google Scholar 

  24. R. Gedye, F. Smith, K. Westaway, H. Ali, L. Baldisera, L. Laberge, and R. Rousell, Tetrahedron. Lett. 27, 279 (1986).

    Article  CAS  Google Scholar 

  25. D. Wawrzynczyk, D. Piatkowski, S. Mackowski, M. Samoc, and M. Nyk, J. Mater. Chem. C 3, 5332 (2015).

    Article  CAS  Google Scholar 

  26. T. Xuan, J. Liu, R. Xie, H. Li, and Z. Sun, Chem. Mater. 27, 1187 (2015).

    Article  CAS  Google Scholar 

  27. W. Lu, W. Ma, J. Lu, X. Li, Y. Zhao, and G. Chen, Macromol. Rapid Commun. 35, 827 (2014).

    Article  CAS  Google Scholar 

  28. Y. Liu, N. Xiao, N. Gong, H. Wang, X. Shi, W. Gu, and L. Ye, Carbon 68, 258 (2014).

    Article  CAS  Google Scholar 

  29. V. Vijan, S. Kaity, S. Biswas, J. Isaac, and A. Ghosh, Carbohydr. Polym. 90, 496 (2012).

    Article  CAS  Google Scholar 

  30. F. Motasemi and F. N. Ani, Renewable Sustainable Energy Rev. 16, 4719 (2012).

    Article  CAS  Google Scholar 

  31. J. Klinowski, F. A. Almeida Paz, and P. Silva, J. Rocha, Dalton Trans. 40, 321 (2011).

    Article  CAS  Google Scholar 

  32. R. Hoogenboom and U. S. Schubert, Macromol. Rapid Commun. 28, 368 (2007).

    Article  CAS  Google Scholar 

  33. C. Zhang, L. Liao, and S. Gong, Green Chem. 9, 303 (2007).

    Article  CAS  Google Scholar 

  34. A. Sosnik, G. Gotelli, and G. A. Abraham, Prog. Polym. Sci. 36, 1050 (2011).

    Article  CAS  Google Scholar 

  35. A. Loupy, Microwaves in Organic Synthesis (Wiley-VCH, Weinheim, 2006).

    Book  Google Scholar 

  36. C. O. Kappe and A. Stadler, Microwaves in Organic and Medicinal Chemistry (Wiley-VCH, Weinheim, 2005).

    Book  Google Scholar 

  37. P. Lidstrom and J. P. Tierney, Microwave-Assisted Organic Synthesis (Blackwell Publishing, Oxford, 2005).

    Google Scholar 

  38. C. O. Kappe, Angew. Chem., Int. Ed. 43, 6250 (2004).

    Article  CAS  Google Scholar 

  39. A. De La Hoz, A. Diaz-Ortiz, and A. Moreno, Chem. Soc. Rev. 34, 164 (2005).

    Article  Google Scholar 

  40. H. M. Kingston and S. J. Haswell, Microwave-Enhanced Chemistry. Fundamentals, Sample Preparation and Applications (American Chemical Society, Washington, DC, 1997).

    Google Scholar 

  41. G. Min, E. Sheina, G. D. Patterson, M. A. Bevan, and D. C. Prieve, Colloids Surf., A 202, 9(2002).

    Article  CAS  Google Scholar 

  42. A. K. Dunker, W. E. John, R. Rammon, B. Farmer, and S. J. Johns, J. Adhes. 19, 153 (1986).

    Article  CAS  Google Scholar 

  43. C. Alkan, A. Sari, A. Karaipekli, and O. Uzun, Sol. Energy Mater. Sol. Cells 93, 143 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to W. B. Xu or S. W. Guo.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G.X., Xu, W.B., Hou, Q. et al. Microwave-assisted synthesis of poly(urea-formaldehyde)/lauryl alcohol phase change energy storage microcapsules. Polym. Sci. Ser. B 58, 321–328 (2016). https://doi.org/10.1134/S1560090416030167

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560090416030167

Keywords

Navigation