Skip to main content
Log in

Comparison of the role of new ethers and conventional alkoxysilanes as external donors in the polymerization of propylene using the industrial Ziegler-Natta catalyst

Polymer Science Series B Aims and scope Submit manuscript

Cite this article

Abstract

Two new ethers were synthesized using the Williamson reaction from related alcohols and were used as external donors in propylene polymerization in the presence of the industrial diisobutyl phthalate-based MgCl2-supported Ziegler-Natta catalyst. For comparison the propylene polymerization was carried out in the presence of silane and in the absence of external donors. The produced polymers were characterized by differential scanning calorimetry, xylene extraction, melt flow index, scanning electron microscopy and gel permeation chromatography. The isotacticity, molecular weight and molecular weight distribution, melt flow index, crystallinity degree and thermal properties of polypropylenes were influenced by the type of external donors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. T. Taniike and M. Terano, The Use of Donors to Increase the Isotacticity of Polypropylene, in Polyolefins: 50 Years after Ziegler and Natta I, Ed. by W. Kaminsky (Springer, Berlin, Heidelberg, 2013), pp. 81–97.

    Chapter  Google Scholar 

  2. I. Salakhov, A. Batyrshin, S. Sergeev, G. Bukatov, A. Barabanov, A. Sakhabutdinov, V. Zakharov, and K. K. Gilmanov, Catal. Ind. 6, 198 (2014).

    Article  Google Scholar 

  3. Y. Kissin, Alkene Polymerization Reactions with Transition Metal Catalysts (Elsevier, Amsterdam, 2008).

    Google Scholar 

  4. K. M. Bichinho, G. P. Pires, J. H. Z. dos Santos, M. M. de Camargo Forte, and C. R. Wolf, Anal. Chim. Acta 512, 359 (2004).

    Article  CAS  Google Scholar 

  5. A. S. Bazhenov, P. Denifl, T. Leinonen, A. Pakkanen, M. Linnolahti, and T. A. Pakkanen, J. Phys. Chem. C 118, 27878 (2014).

    Article  CAS  Google Scholar 

  6. K. Thushara, E. S. Gnanakumar, R. Mathew, T. Ajithkumar, P. Rajamohanan, S. Bhaduri, and C. S. Gopinath, Dalton Trans. 41, 11311 (2012).

    Article  CAS  Google Scholar 

  7. V. Gupta and M. Ravindranathan, Polym. J. 37, 1399 (1996).

    Article  CAS  Google Scholar 

  8. S. Mukhopadhyay, S. A. Kulkarni, and S. Bhaduri, J. Organomet. Chem. 690, 1356 (2005).

    Article  CAS  Google Scholar 

  9. A. Andoni, J. C. Chadwick, H. J. Niemantsverdriet, and P. C. Thüne, Macromol. Rapid Commun. 28, 1466 (2007).

    Article  CAS  Google Scholar 

  10. A. Lyubimtsev and I. Nifant’ev, Russ. Chem. Bull. 58, 1672 (2009).

    Article  CAS  Google Scholar 

  11. H. Heikkinen, T. Liitiä, V. Virkkunen, T. Leinonen, T. Helaja, and P. Denifl, Solid State Nucl. Magn. Reson. 43–44, 36 (2012).

    Article  Google Scholar 

  12. A. Andoni, J. C. Chadwick, S. Milani, H. J. Niemantsverdriet, and P. C. Thüne, J. Catal. 247, 129 (2007).

    Article  CAS  Google Scholar 

  13. E. Groppo, K. Seenivasan, and C. Barzan, Catal. Sci. Technol. 3, 858 (2013).

    Article  CAS  Google Scholar 

  14. J. Qiao, M. Guo, L. Wang, D. Liu, X. Zhang, L. Yu, W. Song, and Y. Liu, Polym. Chem. 2, 1611 (2011).

    Article  CAS  Google Scholar 

  15. X.-R. Shen, Z.-S. Fu, J. Hu, Q. Wang, and Z.-Q. Fan, J. Phys. Chem. C 117, 15174 (2013).

    Article  CAS  Google Scholar 

  16. B. G. Song and S. K. Ihm, J. Appl. Polym. Sci. 131, 40536 (2014).

    Google Scholar 

  17. P. Chammingkwan, V. Q. Thang, M. Terano, and T. Taniike, Top. Catal. 57, 911 (2014).

    Article  CAS  Google Scholar 

  18. T. Taniike and M. Terano, J. Catal. 293, 39 (2012).

    Article  CAS  Google Scholar 

  19. P. Suba, P. Árva, and S. Németh, Hung. J. Ind. Chem. 35, 31 (2007).

    Google Scholar 

  20. T. Taniike, T. Wada, I. Kouzai, S. Takahashi, and M. Terano, Macromol. Res. 18, 839 (2010).

    Article  CAS  Google Scholar 

  21. M. Gao, H. Liu, J. Wang, C. Li, J. Ma, and G. Wei, Polym. J. 45, 2175 (2004).

    Article  CAS  Google Scholar 

  22. T. Wondimagegen and T. Ziegler, J. Phys. Chem. C 116, 1027 (2011).

    Article  Google Scholar 

  23. H. Chang, H. Li, T. Zheng, L. Zhang, W. Yuan, L. Li, H. Huang, and Y. Hu, J. Polym. Res. 20, 207 (2013).

    Article  Google Scholar 

  24. E. Paukkeri, E. Iiskola, A. Lehtinen, and H. Salminen, Polym. J. 35, 2636 (1994).

    Article  CAS  Google Scholar 

  25. H.-X. Zhang, Y.-J. Shin, D.-H. Lee, and K.-B. Yoon, Polym. Bull. 66, 627 (2011).

    Article  CAS  Google Scholar 

  26. F. Capone, L. Rongo, M. D’Amore, P. H. Budzelaar, and V. Busico, J. Phys. Chem. C 117, 24345 (2013).

    Article  CAS  Google Scholar 

  27. H.-X. Zhang, Y.-J. Lee, J.-R. Park, D.-H. Lee, and K.-B. Yoon, Macromol. Res. 19, 622 (2011).

    Article  CAS  Google Scholar 

  28. O Kudinova, T. Kron, T. Ladygina, A Kozhevnikov, and E. Petrov, L. Novokshonova, Kinet. Catal. 51, 229 (2010).

    Article  CAS  Google Scholar 

  29. Q. Zhou, T. Zheng, H. Li, Q. Li, Y. Zhang, L. Zhang, and Y. Hu, Ind. Eng. Chem. Res. 53, 17929 (2014).

    Article  CAS  Google Scholar 

  30. B. G. Song, Y. H. Choi, and S.-K. Ihm, J. Appl. Polym. Sci. 130, 851 (2013).

    Article  CAS  Google Scholar 

  31. H. Hamaki, W. Hirahata, Y. Fujiwara, S. Kimata, H. Hama, and K. Ikeda, US Patent No. 2013/0109789 (2013).

    Google Scholar 

  32. T. Taniike, T. Funako, and M. Terano, J. Catal. 311, 33 (2014).

    Article  CAS  Google Scholar 

  33. U. C. Makwana, K. J. Singala, R. B. Patankar, S. C. Singh, and V. K. Gupta, J. Appl. Polym. Sci. 125, 896 (2012).

    Article  CAS  Google Scholar 

  34. A. Lima, A. P. Azeredo, M. Nele, S. Liberman, and J. C. Pinto, Macromol. Symp. 344, 86 (2014).

    Article  CAS  Google Scholar 

  35. D. Ribour, R. Spitz, and V. Monteil, J. Polym. Sci., Part A: Polym. Chem. 48, 2631 (2010).

    Article  CAS  Google Scholar 

  36. G. Bukatov, S. Sergeev, V. Zakharov, and A. Potapov, Kinet. Catal. 49, 782 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faramarz Afshar Taromi.

Additional information

The article is published in the original.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zahedi, R., Taromi, F.A., Mirjahanmardi, S.H. et al. Comparison of the role of new ethers and conventional alkoxysilanes as external donors in the polymerization of propylene using the industrial Ziegler-Natta catalyst. Polym. Sci. Ser. B 58, 143–151 (2016). https://doi.org/10.1134/S156009041602010X

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S156009041602010X

Keywords

Navigation