Polymer Science Series B

, Volume 58, Issue 2, pp 143–151 | Cite as

Comparison of the role of new ethers and conventional alkoxysilanes as external donors in the polymerization of propylene using the industrial Ziegler-Natta catalyst

  • Roya Zahedi
  • Faramarz Afshar TaromiEmail author
  • Seyed Heidar Mirjahanmardi
  • Mehdi Nekoomanesh Haghighi
  • Roghayeh Jamjah
  • Khosrow Jadidi


Two new ethers were synthesized using the Williamson reaction from related alcohols and were used as external donors in propylene polymerization in the presence of the industrial diisobutyl phthalate-based MgCl2-supported Ziegler-Natta catalyst. For comparison the propylene polymerization was carried out in the presence of silane and in the absence of external donors. The produced polymers were characterized by differential scanning calorimetry, xylene extraction, melt flow index, scanning electron microscopy and gel permeation chromatography. The isotacticity, molecular weight and molecular weight distribution, melt flow index, crystallinity degree and thermal properties of polypropylenes were influenced by the type of external donors.


Molecular Weight Distribution Melt Flow Index External Donor Methoxymethyl Propylene Polymerization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Taniike and M. Terano, The Use of Donors to Increase the Isotacticity of Polypropylene, in Polyolefins: 50 Years after Ziegler and Natta I, Ed. by W. Kaminsky (Springer, Berlin, Heidelberg, 2013), pp. 81–97.CrossRefGoogle Scholar
  2. 2.
    I. Salakhov, A. Batyrshin, S. Sergeev, G. Bukatov, A. Barabanov, A. Sakhabutdinov, V. Zakharov, and K. K. Gilmanov, Catal. Ind. 6, 198 (2014).CrossRefGoogle Scholar
  3. 3.
    Y. Kissin, Alkene Polymerization Reactions with Transition Metal Catalysts (Elsevier, Amsterdam, 2008).Google Scholar
  4. 4.
    K. M. Bichinho, G. P. Pires, J. H. Z. dos Santos, M. M. de Camargo Forte, and C. R. Wolf, Anal. Chim. Acta 512, 359 (2004).CrossRefGoogle Scholar
  5. 5.
    A. S. Bazhenov, P. Denifl, T. Leinonen, A. Pakkanen, M. Linnolahti, and T. A. Pakkanen, J. Phys. Chem. C 118, 27878 (2014).CrossRefGoogle Scholar
  6. 6.
    K. Thushara, E. S. Gnanakumar, R. Mathew, T. Ajithkumar, P. Rajamohanan, S. Bhaduri, and C. S. Gopinath, Dalton Trans. 41, 11311 (2012).CrossRefGoogle Scholar
  7. 7.
    V. Gupta and M. Ravindranathan, Polym. J. 37, 1399 (1996).CrossRefGoogle Scholar
  8. 8.
    S. Mukhopadhyay, S. A. Kulkarni, and S. Bhaduri, J. Organomet. Chem. 690, 1356 (2005).CrossRefGoogle Scholar
  9. 9.
    A. Andoni, J. C. Chadwick, H. J. Niemantsverdriet, and P. C. Thüne, Macromol. Rapid Commun. 28, 1466 (2007).CrossRefGoogle Scholar
  10. 10.
    A. Lyubimtsev and I. Nifant’ev, Russ. Chem. Bull. 58, 1672 (2009).CrossRefGoogle Scholar
  11. 11.
    H. Heikkinen, T. Liitiä, V. Virkkunen, T. Leinonen, T. Helaja, and P. Denifl, Solid State Nucl. Magn. Reson. 43–44, 36 (2012).CrossRefGoogle Scholar
  12. 12.
    A. Andoni, J. C. Chadwick, S. Milani, H. J. Niemantsverdriet, and P. C. Thüne, J. Catal. 247, 129 (2007).CrossRefGoogle Scholar
  13. 13.
    E. Groppo, K. Seenivasan, and C. Barzan, Catal. Sci. Technol. 3, 858 (2013).CrossRefGoogle Scholar
  14. 14.
    J. Qiao, M. Guo, L. Wang, D. Liu, X. Zhang, L. Yu, W. Song, and Y. Liu, Polym. Chem. 2, 1611 (2011).CrossRefGoogle Scholar
  15. 15.
    X.-R. Shen, Z.-S. Fu, J. Hu, Q. Wang, and Z.-Q. Fan, J. Phys. Chem. C 117, 15174 (2013).CrossRefGoogle Scholar
  16. 16.
    B. G. Song and S. K. Ihm, J. Appl. Polym. Sci. 131, 40536 (2014).Google Scholar
  17. 17.
    P. Chammingkwan, V. Q. Thang, M. Terano, and T. Taniike, Top. Catal. 57, 911 (2014).CrossRefGoogle Scholar
  18. 18.
    T. Taniike and M. Terano, J. Catal. 293, 39 (2012).CrossRefGoogle Scholar
  19. 19.
    P. Suba, P. Árva, and S. Németh, Hung. J. Ind. Chem. 35, 31 (2007).Google Scholar
  20. 20.
    T. Taniike, T. Wada, I. Kouzai, S. Takahashi, and M. Terano, Macromol. Res. 18, 839 (2010).CrossRefGoogle Scholar
  21. 21.
    M. Gao, H. Liu, J. Wang, C. Li, J. Ma, and G. Wei, Polym. J. 45, 2175 (2004).CrossRefGoogle Scholar
  22. 22.
    T. Wondimagegen and T. Ziegler, J. Phys. Chem. C 116, 1027 (2011).CrossRefGoogle Scholar
  23. 23.
    H. Chang, H. Li, T. Zheng, L. Zhang, W. Yuan, L. Li, H. Huang, and Y. Hu, J. Polym. Res. 20, 207 (2013).CrossRefGoogle Scholar
  24. 24.
    E. Paukkeri, E. Iiskola, A. Lehtinen, and H. Salminen, Polym. J. 35, 2636 (1994).CrossRefGoogle Scholar
  25. 25.
    H.-X. Zhang, Y.-J. Shin, D.-H. Lee, and K.-B. Yoon, Polym. Bull. 66, 627 (2011).CrossRefGoogle Scholar
  26. 26.
    F. Capone, L. Rongo, M. D’Amore, P. H. Budzelaar, and V. Busico, J. Phys. Chem. C 117, 24345 (2013).CrossRefGoogle Scholar
  27. 27.
    H.-X. Zhang, Y.-J. Lee, J.-R. Park, D.-H. Lee, and K.-B. Yoon, Macromol. Res. 19, 622 (2011).CrossRefGoogle Scholar
  28. 28.
    O Kudinova, T. Kron, T. Ladygina, A Kozhevnikov, and E. Petrov, L. Novokshonova, Kinet. Catal. 51, 229 (2010).CrossRefGoogle Scholar
  29. 29.
    Q. Zhou, T. Zheng, H. Li, Q. Li, Y. Zhang, L. Zhang, and Y. Hu, Ind. Eng. Chem. Res. 53, 17929 (2014).CrossRefGoogle Scholar
  30. 30.
    B. G. Song, Y. H. Choi, and S.-K. Ihm, J. Appl. Polym. Sci. 130, 851 (2013).CrossRefGoogle Scholar
  31. 31.
    H. Hamaki, W. Hirahata, Y. Fujiwara, S. Kimata, H. Hama, and K. Ikeda, US Patent No. 2013/0109789 (2013).Google Scholar
  32. 32.
    T. Taniike, T. Funako, and M. Terano, J. Catal. 311, 33 (2014).CrossRefGoogle Scholar
  33. 33.
    U. C. Makwana, K. J. Singala, R. B. Patankar, S. C. Singh, and V. K. Gupta, J. Appl. Polym. Sci. 125, 896 (2012).CrossRefGoogle Scholar
  34. 34.
    A. Lima, A. P. Azeredo, M. Nele, S. Liberman, and J. C. Pinto, Macromol. Symp. 344, 86 (2014).CrossRefGoogle Scholar
  35. 35.
    D. Ribour, R. Spitz, and V. Monteil, J. Polym. Sci., Part A: Polym. Chem. 48, 2631 (2010).CrossRefGoogle Scholar
  36. 36.
    G. Bukatov, S. Sergeev, V. Zakharov, and A. Potapov, Kinet. Catal. 49, 782 (2008).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • Roya Zahedi
    • 1
  • Faramarz Afshar Taromi
    • 2
    Email author
  • Seyed Heidar Mirjahanmardi
    • 3
  • Mehdi Nekoomanesh Haghighi
    • 4
  • Roghayeh Jamjah
    • 4
  • Khosrow Jadidi
    • 5
  1. 1.Department of ChemistryAmirkabir University of TechnologyTehranIran
  2. 2.Departmentof Polymer EngineeringAmirkabir University of TechnologyTehranIran
  3. 3.Department of Polymer EngineeringAmirkabir Universityof Technology-Mahshahr CampusMahshahrIran
  4. 4.Iran Polymer and Petrochemical Institute (IPPI)TehranIran
  5. 5.Department of ChemistryShahid Beheshti UniversityTehranIran

Personalised recommendations