Skip to main content
Log in

Effect of polyethylene glycol on sulfonated polyether imide (SPEI) for fuel cell applications

  • Functional Polymers
  • Published:
Polymer Science Series B Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The sulfonated polyetherimide (sPEI) was synthesized by direct sulfonation method using chlorosulfonic acid as a sulfonating agent. Different sulfonation degrees of sPEI was obtained by varying the ratio of PEI to chlorosulfonic acid and reaction time. Then, sulfonated polyetherimide was blended with polyethylene glycol (PEG) and thermally cross-linked in order to achieve high performance proton exchange membrane. It was found that the addition of PEG resulted in a significant increase in porosity and water uptake of the membranes, which favored proton transport at low temperature. The maximum proton conductivity was 11 mS/cm at 75°C for the blend membrane containing 20% PEG. The sulfonation and blend modification of PEI were characterized by attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Winter and R. J. Brodd, Chem. Rev. 104, 4245 (2004).

    Article  CAS  Google Scholar 

  2. R. Souzy and B. Ameduri, Prog. Polym. Sci. 30, 644 (2005).

    Article  CAS  Google Scholar 

  3. K. D. Kreuer, J. Membr. Sci. 185, 29 (2001).

    Article  CAS  Google Scholar 

  4. P. Choi, N. H. Jalani, and R. Datta, J. Electrochem. Soc. 152, E123 (2005).

    Article  CAS  Google Scholar 

  5. B. Mecheri, V. Felice, Z. Zhang, A. D’Epifanio, S. Licoccia, and A. C. Tavares, J. Phys. Chem. C 116, 20820 (2012).

    Article  CAS  Google Scholar 

  6. D. S. Kim, K. H. Shin, H. B. Park, Y. S. Chung, S. Y. Nam, and Y. M. Lee, J. Membr. Sci. 278, 428 (2006).

    Article  CAS  Google Scholar 

  7. Y. Zhang, Z. Cui, C. Zhao, K. Shao, H. Li, T. Fu, H. Na, and W. Xing, J. Power Sources 191, 253 (2009).

    Article  CAS  Google Scholar 

  8. C. Decker, Prog. Polym. Sci. 21, 593 (1996).

    Article  CAS  Google Scholar 

  9. C. W. Lin, R. Thangamuthu, and C. J. Yang, J. Membr. Sci. 253, 23 (2005).

    Article  CAS  Google Scholar 

  10. J. A. Asensio, S. Borrós, and P. Gómez-Romero, Electrochem. Commun. 5, 967 (2003).

    Article  CAS  Google Scholar 

  11. P. Xing, G. P. Robertson, M. D. Guiver, S. D. Mikhailenko, and S. Kaliaguine, Polymer 46, 3257 (2005).

    Article  CAS  Google Scholar 

  12. M. A. Hickner, H. Ghassemi, Y. S. Kim, B. R. Einsla, and J. E. McGrath, Chem. Rev. 104, 4587 (2004).

    Article  CAS  Google Scholar 

  13. M. K. Rahman, G. Aiba, M. A. B. H. Susan, and M. Watanabe, Electrochim. Acta 50, 633 (2004).

    Article  CAS  Google Scholar 

  14. H. Cai, K. Shao, S. Zhong, C. Zhao, G. Zhang, X. Li, and H. Na, J. Membr. Sci. 297, 162 (2007).

    Article  CAS  Google Scholar 

  15. X. Jin, M. T. Bishop, T. S. Ellis, and F. E. Karasz, Br. Polym. J. 17, 4 (1985).

    Article  CAS  Google Scholar 

  16. I. Cabasso, E. Klein, and J. K. Smith, J. Appl. Polym. Sci. 20, 2377 (1976).

    Article  CAS  Google Scholar 

  17. J. Chen, J. Li, X. Zhan, X. Han, and C. Chen, Front. Chem. Eng. China 4, 300 (2010).

    Article  CAS  Google Scholar 

  18. J.-H. Kim and K.-H. Lee, J. Membr. Sci. 138, 153 (1998).

    Article  CAS  Google Scholar 

  19. S. Lee, W. Jang, S. Choi, K. Tharanikkarasu, Y. Shul, and H. Han, J. Appl. Polym. Sci. 104, 2965 (2007).

    Article  CAS  Google Scholar 

  20. Z. Dou, S. Zhong, C. Zhao, X. Li, T. Fu, and H. Na, J. Appl. Polym. Sci. 109, 1057 (2008).

    Article  CAS  Google Scholar 

  21. M. Baias, D. E. Demco, I. Colicchio, B. Blümich, and M. Möller, Chem. Phys. Lett. 456, 227 (2008).

    Article  CAS  Google Scholar 

  22. E. Cho, J.-S. Park, S.-H. Park, Y.-W. Choi, T.-H. Yang, Y.-G. Yoon, C.-S. Kim, W.-Y. Lee, and S.-B. Park, J. Membr. Sci. 318, 355 (2008).

    Article  CAS  Google Scholar 

  23. I. Colicchio, F. Wen, H. Keul, U. Simon, and M. Moeller, J. Membr. Sci. 326, 45 (2009).

    Article  CAS  Google Scholar 

  24. S. H. Pezzin, N. Stock, S. Shishatskiy, and S. P. Nunes, J. Membr. Sci. 325, 559 (2008).

    Article  CAS  Google Scholar 

  25. S. Pasupathi, S. Ji, B. Jan Bladergroen, and V. Linkov, Int. J. Hydrogen Energy 33, 3132 (2008).

    Article  CAS  Google Scholar 

  26. T. Yang, Int. J. Hydrogen Energy 33, 6772 (2008).

    Article  CAS  Google Scholar 

  27. S. D. Mikhailenko, K. Wang, S. Kaliaguine, P. Xing, G. P. Robertson, and M. D. Guiver, J. Membr. Sci. 233, 93 (2004).

    Article  CAS  Google Scholar 

  28. S. D. Mikhailenko, G. P. Robertson, M. D. Guiver, and S. Kaliaguine, J. Membr. Sci. 285, 306 (2006).

    Article  CAS  Google Scholar 

  29. V. R. Hande, S. Rao, S. K. Rath, A. Thakur, and M. Patri, J. Membr. Sci. 322, 67 (2008).

    Article  CAS  Google Scholar 

  30. S. Zhong, C. Liu, and H. Na, J. Membr. Sci. 326, 400 (2009).

    Article  CAS  Google Scholar 

  31. Y. Zhang, X. Fei, G. Zhang, H. Li, K. Shao, J. Zhu, C. Zhao, Z. Liu, M. Han, and H. Na, Int. J. Hydrogen Energy 35, 6409 (2010).

    Article  CAS  Google Scholar 

  32. H. Luo, G. Vaivars, and M. Mathe, Int. J. Hydrogen Energy 34, 8616 (2009).

    Article  CAS  Google Scholar 

  33. J.-J. Shieh, T.-S. Chung, R. Wang, M. P. Srinivasan, and D. R. Paul, J. Membr. Sci. 182, 111 (2001).

    Article  CAS  Google Scholar 

  34. S.-J. Yang, W. Jang, C. Lee, Y. G. Shul, and H. Han, J. Polym. Sci., Part B: Polym. Phys. 43, 1455 (2005).

    Article  CAS  Google Scholar 

  35. D. Gupta and V. Choudhary, Int. J. Hydrogen Energy 36, 8525 (2011).

    Article  CAS  Google Scholar 

  36. J. Qiao, S. Ikesaka, M. Saito, J. Kuwano, and T. Okada, Electrochem. Commun. 9, 1945 (2007).

    Article  CAS  Google Scholar 

  37. B. Liu, W. Hu, G. P. Robertson, and M. D. Guiver, J. Mater. Chem. 18, 4675 (2008).

    Article  CAS  Google Scholar 

  38. L.-Q. Shen, Z.-K. Xu, Z.-M. Liu, and Y.-Y. Xu, J. Membr. Sci. 218, 279 (2003).

    Article  CAS  Google Scholar 

  39. B. Smitha, S. Sridhar, and A. A. Khan, J. Membr. Sci. 259, 10 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamzeh Jodat.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jodat, H., Mortezaei, M., Mahdavi, H. et al. Effect of polyethylene glycol on sulfonated polyether imide (SPEI) for fuel cell applications. Polym. Sci. Ser. B 58, 205–213 (2016). https://doi.org/10.1134/S1560090416020020

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560090416020020

Keywords

Navigation