Skip to main content
Log in

An organic-inorganic polymeric alumina hybrid nanocomposite

  • Composites
  • Published:
Polymer Science Series B Aims and scope Submit manuscript

Abstract

An organic-inorganic hybrid-nanocomposite of poly(2-acrylamido-2-methyl-1-propane sulfonic acid sodium salt) and Al2O3 with nano-alumina particles was synthesized in two steps. Firstly, the surface of nano-alumina particles was modified by 3-methacryloxy-propyl-trimethoxysilane as a coupling agent by sol-gel method. Secondly, the surface modified nano-alumina particles were grafted onto the poly(2-acrylamido-2-methyl-propane sulfonic acid sodium salt) by free radical polymerization. The spectral (FTIR spectroscopy) and thermal (TGA) methods, verified the participation of coupling agent, polymer and aluminum oxide (alumina) into the hybrid structure. Introduction of silanol groups into the alumina particles leads to a better distribution of particles into the polymeric matrix. The results also showed four steps of weight loss for the hybrid nanocomposite, which includes about 80% weight loss until 700°C and 20% of char yield, which is due to presence of alumina, silica and sodium oxide in hybrid nanocomposite. SEM and TEM studies confirmed that the nano-alumina particles have been spherical and homogeneously dispersed throughout the sample with dimensions in the range of nanosizes inside the nanocomposite sample containing 5 wt % of Al2O3. The analysis of thermo-mechanical properties of homopolymer and its nanocomposite revealed the shift in storage modulus and tanδ peaks that was attributed to morphological changes in the nanocomposites due to the amount of inorganic nano-particles and their distribution in polymer matrix. The adsorption behavior showed that hybrid nanocomposites have ability for interaction with heavy metal ions by means of adsorption through interaction between the oppositely charged functionalities and metal ions. However, it was found that the adsorption efficiency of the hybrid nanocomposite is much better than that of its pure polymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Noppakundilograt, P. Nanakorn, S. Sonjaipanich, N. Seetapan, and S. J. Kiatkamjornwong, J. Appl. Polym. Sci. 114, 2564 (2009).

    Article  CAS  Google Scholar 

  2. S. S. Wong, T. T. Teng, A. L. Ahmad, A. Zuhairi, G. Najafpour, J. Hazard. Mater. 135, 378 (2006).

    Article  CAS  Google Scholar 

  3. R. E. Sojka, D. L. Bjorneberg, J. A. Entry, R. D. Lentz, W. J. Orts, Adv. Agron. 92, 75 (2007).

    CAS  Google Scholar 

  4. B. R. Sharma, N. C. Dhuldhoya, and U. C. Merchant, J. Polym. Environ. 14, 195 (2006).

    Article  CAS  Google Scholar 

  5. W. Y. Yang, J. W. Qian, and Z. Q. Shen, J. Colloid Interface Sci. 273, 400 (2004).

    Article  CAS  Google Scholar 

  6. M. Z. Rong, Q. L. Ji, M. Q. Zhang, and K. Friedrich, Eur. Polym. J. 38, 1573 (2002).

    Article  CAS  Google Scholar 

  7. K. Siwińska-Stefańska, A. Krysztafkiewicz, and T. Jesionowski, Physicochem. Probl. Miner. Process. 41, 205 (2007).

    Google Scholar 

  8. F. An, X. Feng, and B. Gao, Chem. Eng. J. 151, 183 (2009).

    Article  CAS  Google Scholar 

  9. J. Jang and H. Park, J. Appl. Polym. Sci. 83, 1817 (2002).

    Article  CAS  Google Scholar 

  10. W. Feng, T. R. Zhang, and L. Wei, Mater. Lett. 54, 309 (2002).

    Article  CAS  Google Scholar 

  11. Y. Matsuura, K. Matsukawa, R. Kawabata, N. Higashi, M. Niwa, H. Inoue, Polymer 43, 1549 (2002).

    Article  CAS  Google Scholar 

  12. A. E. Langroudi and A. Rabiee, J. Polym. Res. 19, 1 (2012).

    Article  Google Scholar 

  13. M. Z. Rong, Q. L. Ji, M. Q. Zhang, and K. Friedrich, Eur. Polym. J. 38, 1537 (2002).

    Article  Google Scholar 

  14. L. Prado, M. G. Sriyai, M. Hislandi, and K. Schulte, J. Braz. Chem. Soc. 21, 2238 (2010).

    Article  CAS  Google Scholar 

  15. A. R. Katritzky, J. M. Lagowski, and J. A. T. Beard, Spectrochim. Acta 60, 964 (1960).

    Article  Google Scholar 

  16. R. Chen and F. J. Boerio, J. Adhes. Sci. Technol. 4(6), 453 (1990).

    Article  CAS  Google Scholar 

  17. F. Rosa, J. Bordado, and M. J. Casquilho, Appl. Polym. Sci. 87, 192 (2003).

    Article  CAS  Google Scholar 

  18. Y. Mansoori, S. V. Atghia, M. R. Zamanloo, G. H. Imanzadeh, M. Sirousazar, Eur. Polym. J. 46, 1844 (2010).

    Article  CAS  Google Scholar 

  19. J. M. Yeh, S. J. Liou, and Y. W. Chang, J. Appl. Polym. Sci. 91, 3489 (2004).

    Article  CAS  Google Scholar 

  20. T. P. Teng, Y. H. Hung, T. C. Teng, and J. H. Chen, Nanoscale Res. Lett. 6, 488 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Rabiee.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rabiee, A., Baharvand, H. An organic-inorganic polymeric alumina hybrid nanocomposite. Polym. Sci. Ser. B 57, 264–273 (2015). https://doi.org/10.1134/S1560090415030069

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560090415030069

Keywords

Navigation