Skip to main content
Log in

Polymers Based on 3-amino-7-dimethylamino-2-methylphenazine hydrochloride: Synthesis, structure, and properties

  • Polymerization
  • Published:
Polymer Science Series B Aims and scope Submit manuscript

Abstract

Heterocyclic polymers based on 3-amino-7-dimethylamino-2-methylphenazine hydrochloride are synthesized for the first time via chemical oxidative polymerization in aqueous solutions of acetonitrile and DMF. The effects of the concentrations of reagents, their ratios, temperature, and the time of reaction on the yields and chemical structures of the polymers are studied. The structures of the polymers are investigated via FTIR spectroscopy, electron spectroscopy, X-ray photoelectron spectroscopy, and solid-state CP/MAS 13C NMR spectroscopy. It is found that polymer chains grow via the addition of C–N groups between 3-amino groups and the para position of phenyl rings relative to nitrogen. During the oxidative polymerization of 3-amino-7-dimethylamino-2-methylphenazine hydrochloride, abstraction of Cl–and one methyl group from the 7-dimethylamino group yields poly(3-amino-7-methylamino-2-methylphenazine). The resulting polymers are amorphous, electroactive, and thermally stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. G. MacDiarmid, Synth. Met. 125 (1), 11 (2002).

    Article  CAS  Google Scholar 

  2. A. Malinauskas, Polymer 42 (9), 3957 (2001).

    Article  CAS  Google Scholar 

  3. T. Boinowitz, G. Süden, U. Tormin, H. Krohn, F. Beck, J.Power Sources 56 (2), 179 (1995).

    Article  CAS  Google Scholar 

  4. A. Riul, Jr., A. M. Soto Gallardo, S. V. Mello, S. Bone, D. M. Taylor, L. H. C. Mattoso, Synth. Met. 132 (2), 109 (2003).

    Article  CAS  Google Scholar 

  5. C. Weidlich, K.-M. Mangold, and K. Jüttner, Electrochim. Acta 47 (5), 741 (2001).

    Article  CAS  Google Scholar 

  6. O. Jianyong and L. Yongfang, Polymer 38 (8), 1971 (1997).

    Article  Google Scholar 

  7. C. T. Kou and T. R. Liou, Synth. Met. 82 (3), 167 (1996).

    Article  CAS  Google Scholar 

  8. A. A. Karyakin, M. Yu. Vagin, S. Zh. Ozkan, and G. P. Karpachova, J. Phys. Chem. B 108 (31),11591.

  9. M. Yu. Vagin, S. A. Trashin, S. Zh. Ozkan, G. P. Karpachova, A. A. Karyakin, J. Electroanal. Chem. 584 (2), 110 (2005).

    Article  CAS  Google Scholar 

  10. S. A. Trashin, M. Yu. Vagin, G. P. Karpacheva, S. Zh. Ozkan, A. A. Karyakin, J.Nano-Microsyst. Tech., No. 8, 49 (2008).

    Google Scholar 

  11. A. A. Karyakin, L. V. Lukachova, E. E. Karyakina, M. Vuki, J. Wang, A. V. Orlov, G. P. Karpachova, Anal. Chem. 71 (13), 2534 (1999).

    Article  CAS  Google Scholar 

  12. A. N. Ivanov, H. C. Budnikov, G. A. Evtugyn, L. V. Lukachova, E. E. Karyakina, A. A. Karyakin, S. G. Kiseleva, A. V. Orlov, G. P. Karpacheva, IEEE Sens. J. 3 (3), 333 (2003).

    Article  CAS  Google Scholar 

  13. A. S. Hutchison, T. W. Lewis, S. E. Moulton, G. M. Spinks, G. G. Wallace, Synth. Met. 113 (1–2), 121 (2000).

    Article  CAS  Google Scholar 

  14. G. G. Wallace, M. R. Gandhi, P. Murray, and G. M. Spinks, Synth. Met. 73 (3), 247 (1995).

    Article  Google Scholar 

  15. R. H. Baughman, Synth. Met. 78 (3), 339 (1996).

    Article  CAS  Google Scholar 

  16. E. Smela, O. Inganas, Q. Pei, and I. Lundstrom, Adv. Mater. 5 (9), 630 (1993).

    Article  CAS  Google Scholar 

  17. T. F. Otero and J. M. Sansinena, Bioelectrochem. Bioenerg. 42 (2), 117 (1997).

    Article  CAS  Google Scholar 

  18. G. P. Karpacheva, A. V. Orlov, S. G. Kiseleva, S. Zh. Ozkan, O. Yu. Yurchenko, G. N. Bondarenko, Russ. J. Electrochem. 40 (3), 305 (2004).

    Article  CAS  Google Scholar 

  19. A. V. Orlov, S. Zh. Ozkan, G. N. Bondarenko, and G. P. Karpacheva, Polym. Sci., Ser. B 48 (1–2), 5 (2006).

    Article  Google Scholar 

  20. A. V. Orlov, S. Zh. Ozkan, and G. P. Karpacheva, Polym. Sci., Ser. B 48 (1–2), 11 (2006).

    Article  Google Scholar 

  21. S. Zh. Ozkan, G. P. Karpacheva, A. V. Orlov, and M. A. Dzyubina, Polym. Sci., Ser. B 49 (1–2), 36 (2007).

    Article  Google Scholar 

  22. S. Zh. Ozkan, G. N. Bondarenko, A. V. Orlov, and G. P. Karpacheva, Polym. Sci., Ser. B 51 (5–6), 149 (2009).

    Article  Google Scholar 

  23. Yu. M. Korolev and S. Zh. Ozkan, Dokl. Phys. Chem 429 (1), 223 (2009).

    Article  CAS  Google Scholar 

  24. S. Zh. Ozkan, G. P. Karpacheva, and G. N. Bondarenko, Rus. Chem. Bull. 60 (8), 1651 (2011).

    Article  CAS  Google Scholar 

  25. S. Zh. Ozkan, G. N. Bondarenko, and G. P. Karpacheva, Polym. Sci., Ser. B 52 (5), 263 (2010).

    Article  Google Scholar 

  26. S. Zh. Ozkan, I. S. Eremeev, G. P. Karpacheva, T. N. Prudskova, E. V. Veselova, G. N. Bondarenko, G. A. Shandryuk, Polym. Sci., Ser. B 55 (3–4), 107 (2013).

    Article  CAS  Google Scholar 

  27. S. Zh. Ozkan, I. S. Eremeev, and G. P. Karpacheva, Aniline: Structural/Physical Properties, Reactions and Environmental Effects, Ed. by K. Hernandez and M. Holloway(Nova Science Publ., Inc, New York, 2013).

  28. S. Zh. Ozkan, I. S. Eremeev, G. P. Karpacheva, and G. N. Bondarenko, Open J. Polym. Chem. 3 (3), 63 (2013).

    Article  CAS  Google Scholar 

  29. Yu. V. Karyakin and I. I. Angelov, Pure Chemical Reagents (Khimiya, Moscow, 1974).

    Google Scholar 

  30. R. L. Cook, Anal. Bioanal. Chem 378 (6), 1484 (2004).

    Article  CAS  Google Scholar 

  31. G. Metz, X. L. Wu, and S. O. Smith, J. Magn. Reson., Ser. A 110 (2), 219 (1994).

    Article  CAS  Google Scholar 

  32. R. S. Thakur, N. D. Kurur, and P. K. Madhu, Chem. Phys. Lett. 426 (4–6), 459 (2006).

    Article  CAS  Google Scholar 

  33. W. L. Earl and D. L. Vanderhart, J. Magn. Reson. 48 (1), 35 (1982).

    CAS  Google Scholar 

  34. C. R. Morcombe and K. W. Zilm, J. Magn. Reson. 162 (2), 479 (2003).

    Article  CAS  Google Scholar 

  35. P. S. Rao, S. Subrahmanya, and D. N. Sathyanarayana, Synth. Met. 128 (3), 311 (2002).

    Article  CAS  Google Scholar 

  36. Z. Ping, J. Chem. Soc., Faraday Trans. 92, 3063 (1996).

    Article  CAS  Google Scholar 

  37. B. D. Berezin and D. B. Berezin, Course of Modern Organic Chemistry. Manual for University (Vysshaya shkola, Moscow, 1999) [in Russian].

    Google Scholar 

  38. V. L. Beloborodov, S. E. Zurabyan, A. P. Luzin, and N. A. Tyukavkina, Organic Chemistry. Manual for Universities. Main Course (DROFA, Moscow, 2002) [in Russian].

    Google Scholar 

  39. L. A. Kazitsina and N. B. Kupletskaya, Application of UV, IR, NMR, and Mass Spectroscopy in Organic Chemistry (Vysshaya shkola, Moscow, 1971) [in Russian].

    Google Scholar 

  40. J. Tang, X. Jing, B. Wang, and F. Wang, Synth. Met. 24 (3), 231 (1988).

    Article  CAS  Google Scholar 

  41. T. Ohsaka, Y. Ohnuki, N. Oyama, G. Katagiri, K. Kamisako, J. Electroanal. Chem. 161 (2), 399 (1984).

    Article  CAS  Google Scholar 

  42. M. Trchová, I. Sapurina, J. Prokeš, and J. Stejskal, Synth. Met. 135–136 (1–3), 305 (2003).

    Article  Google Scholar 

  43. J. Y. Shimano and A. G. MacDiarmid, Synth. Met. 123 (2), 251 (2001).

    Article  CAS  Google Scholar 

  44. M. Trchová, J. Prokeš, and J. Stejskal, Synth. Met. 101 (1–3), 840 (1999).

    Article  Google Scholar 

  45. N. V. Bhat, D. T. Seshadri, and R. S. Phadke, Synth. Met. 130 (2), 185 (2002).

    Article  CAS  Google Scholar 

  46. A. P. Dementjev, A. de Graaf, M. C. M. van de Sanden, K. I. Maslakov, A. V. Naumkin, A. A. Serov, Diamond Relat. Mater. 9 (11), 1904 (2000).

    Article  CAS  Google Scholar 

  47. K. L. Tan, B. T. G. Tan, E. T. Kang, and K. G. Neoh, Phys. Rev. 39 (11), 8070 (1989).

    Article  CAS  Google Scholar 

  48. S. W. Huang, K. G. Neoh, E. T. Kang, H. S. Han, K. L. Tan, J. Mater. Chem. 8 (8), 1743 (1998).

    Article  CAS  Google Scholar 

  49. T.-Ch. Wen, J.-B. Chen, and A. Gopalan, Mater. Lett. 57 (2), 280 (2002).

    Article  CAS  Google Scholar 

  50. J. Yue, A. J. Epstein, Z. Zhong, P. K. Gallagher, A. G. MacDiarmid, Synth. Met. 41 (1–2), 765 (1991).

    Article  CAS  Google Scholar 

  51. V. G. Kulkarni, L. D. Campbell, and W. R. Mathew, Synth. Met. 30 (3), 321 (1989).

    Article  CAS  Google Scholar 

  52. A. Boyle, J. F. Penneau, E. Genies, and C. Riekel, J. Polym. Sci., Part B: Polym. Phys. 30 (1), 265 (1992).

    Article  CAS  Google Scholar 

  53. K. Amano, H. Ishikawa, A. Kobayashi, M. Satoh, E. Hasegawa, Synth. Met. 62 (3), 229 (1994).

    Article  CAS  Google Scholar 

  54. J.-C. LaCroix and A. F. Diaz, J. Electrochem. Soc. 135 (6), 1457 (1988).

    Article  CAS  Google Scholar 

  55. L. Ding, X. Wang, and R. V. Gregory, Synth. Met. 104 (2), 73 (1999).

    Article  CAS  Google Scholar 

  56. X.-H. Wang, Y.-H. Geng, L.-X. Wang, X.-B. Jing, F.-S. Wang, Synth. Met. 69 (1–3), 263 (1995).

    Article  CAS  Google Scholar 

  57. T.-Ch. Wen, J.-B. Chen, and A. Gopalan, Mater. Lett. 57 (2), 280 (2002).

    Article  CAS  Google Scholar 

  58. S. Chen and L. Lin, Macromolecules 28 (4), 1239 (1995).

    Article  CAS  Google Scholar 

  59. S. Chen and H. Lee, Macromolecules 26 (13), 3254 (1993).

    Article  CAS  Google Scholar 

  60. Y. Wei, G.-W. Jang, K. F. Hsueh, E. M. Scherr, A. G. MacDiarmid, A. J. Epstein, Polymer 33 (2), 314 (1992).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozkan, S.Z., Karpacheva, G.P., Bondarenko, G.N. et al. Polymers Based on 3-amino-7-dimethylamino-2-methylphenazine hydrochloride: Synthesis, structure, and properties. Polym. Sci. Ser. B 57, 106–115 (2015). https://doi.org/10.1134/S156009041502013X

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S156009041502013X

Keywords

Navigation