Advertisement

Polymer Science Series B

, Volume 56, Issue 5, pp 553–565 | Cite as

Specific features of the copolymerization of acrylonitrile and acrylamide in the presence of low-molecular-mass and polymeric trithiocarbonates and properties of the obtained copolymers

  • E. V. Chernikova
  • S. M. Kishilov
  • A. V. Plutalova
  • Yu. V. Kostina
  • G. N. Bondarenko
  • A. A. Baskakov
  • S. O. Il’in
  • A. Yu. Nikolaev
Polymerization

Abstract

Regularities of the formation of acrylonitrile-acrylamide copolymers obtained from initial monomer feeds containing 1–50 wt % acrylamide in DMSO solutions with the participation of low-molecular-mass and polymeric trithiocarbonates as reversible addition-fragmentation chain transfer agents are studied for the first time. It is shown that the copolymerization in the presence of low-molecular-mass trithiocarbonates proceeds via a pseudo-living mechanism. The synthesized copolymers prove to be inefficient as reversible addition-fragmentation chain transfer agents, a result that leads to products with bimodal molecular-mass distributions. The rheological characteristics of solutions, as well as the thermal behavior of the copolymers obtained in the absence and in the presence of reversible addition-fragmentation chain transfer agents, are studied. The effect of the synthesis conditions on the properties of the synthesized copolymers is discussed.

Keywords

Acrylamide Polymer Science Series Reversible Addition Fragmentation Chain Transfer Reversible Addition Fragmentation Chain Transfer Agent Molecular Mass Characteristic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Morgan, Carbon Fibers and their Composites (Taylor and Francis, New York, 2005).CrossRefGoogle Scholar
  2. 2.
    S. H. Bahrami, P. Bajaj, and K. Sen, J. Appl. Polym. Sci. 88, 685 (2003).CrossRefGoogle Scholar
  3. 3.
    J. J. Liu, H. Y. Ge, and C. G. Wang, J. Appl. Polym. Sci. 102(3), 2175 (2006).CrossRefGoogle Scholar
  4. 4.
    G. T. Sivy and M. M. Coleman, Carbon 19(2), 127 (1981).CrossRefGoogle Scholar
  5. 5.
    J. Ferguson and R. N. Debanath, Fibre Sci. Technol 13, 167 (1980).CrossRefGoogle Scholar
  6. 6.
    V. A. Bhanu, P. Rangarajan, K. Wiles, et al., Polymer 43(18), 4841 (2002).CrossRefGoogle Scholar
  7. 7.
    A. K. Gupta, D. K. Paliwal, and P. Bajaj, J. Appl. Polym. Sci. 58(7), 1161 (1995).CrossRefGoogle Scholar
  8. 8.
    M. M. Coleman, G. T. Sivy, P. C. Painter, et al., Carbon 21(3), 255 (1983).CrossRefGoogle Scholar
  9. 9.
    X. Wu, C. Lu, G. Wu, et al., Fibers Polym. 6(2), 103 (2005).CrossRefGoogle Scholar
  10. 10.
    Handbook of RAFT Polymerization, Ed. by C. BarnerKowollik (Wiley-VCH, Weinheim, 2008).Google Scholar
  11. 11.
    G. Moad, E. Rizzardo, and S. H. Thang, Polymer 49(5), 1079 (2008).CrossRefGoogle Scholar
  12. 12.
    Controlled/Living Radical Polymerization: From Synthesis to Materials, Ed. by A. H. E. Muller and K. Matyjaszewski (Wiley-VCH, Weinheim, 2009).Google Scholar
  13. 13.
    E. V. Chernikova, Z. A. Poteryaeva, S. S. Belyaev, et al., Polym. Sci., Ser. B 53(7–8), 391 (2011).CrossRefGoogle Scholar
  14. 14.
    E. V. Chernikova, Z. A. Poteryaeva, S. S. Belyaev, and E. V. Sivtsov, J. Appl. Chem. 84(6), 1031 (2011).Google Scholar
  15. 15.
    E. V. Chernikova, Z. A. Poteryaeva, A. V. Shlyahtin, et al., Polym. Sci, Ser. B 55(1–2), 1 (2013).CrossRefGoogle Scholar
  16. 16.
    A. Li, Y. Wang, H. Liang, and J. Lu, J. Polym. Sci., Part A: Polym. Chem. 44(8), 2376 (2006).CrossRefGoogle Scholar
  17. 17.
    L. S. Wan, H. Lei, Y. Ding, et al., J. Polym. Sci., Part A: Polym. Chem. 47(1), 92 (2009).CrossRefGoogle Scholar
  18. 18.
    J. Božović-Vukić, H. T. Manon, J. Meuldijk, et al., Macromolecules 40(20), 7132 (2007).CrossRefGoogle Scholar
  19. 19.
    C. J. Durr, J. S. G. Emmerling, A. Kaiser, et al., J. Polym. Sci., Part A: Polym. Chem. 50(1), 174 (2012).CrossRefGoogle Scholar
  20. 20.
    E. V. Chernikova, Z. A. Poteryaeva, and A. V. Plutalova, Polym. Sci., Ser. B 56(1–2), 109 (2014).CrossRefGoogle Scholar
  21. 21.
    A. A. Baskakov, J. V. Kostina, and E. V. Chernikova, Butlerov Commun. 35(8), 42 (2013).Google Scholar
  22. 22.
    G. T. Sivy and M. M. Coleman, Carbon 19(2), 137 (1981).CrossRefGoogle Scholar
  23. 23.
    G. T. Sivy, B. Gordon, and M. M. Coleman, Carbon 21(6), 573 (1983).CrossRefGoogle Scholar
  24. 24.
    X. P. Wu, C. Y. Lu, G. P. Wu, et al., Polym. Mater. Sci. Eng. 21(1), 132 (2005).Google Scholar
  25. 25.
    X. P. Wu, Y. G. Yang, L. C. Ling, et al., New Carbon Mater. 18(1), 196 (2003).Google Scholar
  26. 26.
    D. B. Thomas, A. J. Convertine, L. J. Myrick, et al., Macromolecules 37(24), 8941 (2004).CrossRefGoogle Scholar
  27. 27.
    D. B. Thomas, B. S. Sumerlin, A. B. Lowe, and C. L. McCormick, Macromolecules 36(5), 1436 (2003).CrossRefGoogle Scholar
  28. 28.
    Polymer Handbook, Ed. by J. Brandrup, E. H. Immergut, and E. A. Crulue (Wiley, New York, 1999).Google Scholar
  29. 29.
    J. Dechant, R. Danz, W. Kimmer, and R. Schmolke, Ultrarotspektroskopische Untersuchungen an Polymeren (Akademie, Berlin, 1972).Google Scholar
  30. 30.
    Encyclopedia of Polymer Science and Technology, Ed. by J. I. Kroschwitz (Wiley, Hoboken, 2003).Google Scholar
  31. 31.
    N. Han, X. X. Zhang, and X. C. Wang, Iran. Polym. J. 19(4), 243 (2010).Google Scholar
  32. 32.
    N. Han, X. X. Zhang, and X. C. Wang, J. Appl. Polym. Sci. 103(5), 2776 (2007).CrossRefGoogle Scholar
  33. 33.
    J. Sun, K. T. Wang, J. J. Wang, et al., Adv. Mater. Res. 175–176, 164 (2011).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • E. V. Chernikova
    • 1
  • S. M. Kishilov
    • 1
  • A. V. Plutalova
    • 1
  • Yu. V. Kostina
    • 2
  • G. N. Bondarenko
    • 2
  • A. A. Baskakov
    • 2
  • S. O. Il’in
    • 2
  • A. Yu. Nikolaev
    • 3
  1. 1.Faculty of ChemistryMoscow State UniversityMoscowRussia
  2. 2.Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia
  3. 3.Lomonosov State University of Fine Chemical TechnologyMoscowRussia

Personalised recommendations