Skip to main content
Log in

Synthesis, structure, and properties of anhydrous organic-inorganic proton-exchange membranes based on sulfonated derivatives of octahedral oligosilsesquioxanes and α,ω-di(triethoxysilyl) oligo(oxyethylene urethane urea)

  • Polymer Membranes
  • Published:
Polymer Science Series B Aims and scope Submit manuscript

Abstract

A method of obtaining new organic-inorganic nanostructured proton-exchange membranes operating via the anhydrous proton-conduction mechanism is proposed. An oligo(ethylene oxide) component serves as a proton-conducting phase in these membranes, and the sulfo derivatives of octahedral oligosilsesquioxanes of the acidic and acid-base types are used as proton-donor dopants. These compounds are synthesized via the reaction of octaaminopropyl oligosilsesquioxane with the cyclic anhydride of 2-sulfobenzoic acid at various ratios and contain sulfo groups solely or sulfo and amine groups in the organic frame. The combination of these compounds taken at concentrations of 20 and 50 wt % with α,ω-di(triethoxysilyl) oligo(oxyethylene urethane urea) and phenyltriethoxysilane via the sol-gel method gives rise to hybrid organic-inorganic proton-exchange membranes. The synthesized dopants are distributed in the oligoether component, but the nature of dopant distribution depends on their structure and concentration and has a significant impact on the structure of the resulting amorphous membranes (according to DSC, SAXS, and AFM data). The synthesized membranes are thermally stable up to 219°C. Their conductivity is provided by the segmental mobility of oligooxyethylene fragments (the Grotthuss mechanism) and, regardless of the dopant structure, is primarily determined by the number of charge carriers and the membrane structure. The temperature dependence of the conductivity is described by the Vogel-Fulcher-Tammann equation. The maximum values of the ionic conductivity are attained at 120°C under anhydrous conditions and dopant concentration of 50%: 1.03 × 10−4 for ampholytic oligosilsesquioxane and 7.43 ×10−5 S/cm for fully sulfonated oligosilsesquioxane as a dopant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. P. Tripathi and V. K. Shahi, Prog. Polym. Sci. 36, 945 (2011).

    Article  CAS  Google Scholar 

  2. Yu. A. Dobrovol’skii, E. V. Volkov, A. V. Pisareva, Yu. A. Fedotov, D. Yu. Likhachev, and A. L. Rusanov, Ross. Khim. Zh. 50(6), 95 (2006).

    Google Scholar 

  3. A. B. Yaroslavtsev, Yu. A. Dobrovol’skii, N. S. Shaglaeva, L. A. Frolova, E. V. Gerasimova, and E. A. Sanginov, Usp. Khim. 81, 191 (2012).

    Article  CAS  Google Scholar 

  4. Y. Wang, K. S. Chen, J. Mishler, S. C. Cho, and X. C. Adroher, Appl. Energ. 88, 981 (2011).

    Article  CAS  Google Scholar 

  5. V. V. Shevchenko, A. V. Stryutskii, and N. S. Klimenko, Theor. Exp. Chem. 47(2), 67 (2011).

    Article  CAS  Google Scholar 

  6. L. C. Klein, Y. Daico, M. Aparicio, and F. Damay, Polymer 46, 4504 (2005).

    Article  CAS  Google Scholar 

  7. M. Jeske, C. Soltmann, C. Ellenberg, M. Wilhelm, D. Koch, and G. Grathwohl, Fuel Cells 7, 40 (2007).

    Article  CAS  Google Scholar 

  8. M. Michau and M. Barboiu, J. Mater. Chem. 19, 6124 (2009).

    Article  CAS  Google Scholar 

  9. V. V. Shevchenko, N. S. Klimenko, A. V. Stryutskii, E. A. Lysenkov, and M. Ya. Vortman, Ukr. Khim. Zh. 77, 120 (2011).

    CAS  Google Scholar 

  10. V. V. Shevchenko, A. V. Stryutskii, E. A. Lysenkov, A. R. Zolotarev, and N. S. Klimenko, Ukr. Khim. Zh. 76, 58 (2010).

    CAS  Google Scholar 

  11. A. V. Stryutskii, E. A. Lysenkov, M. A. Gumennaya, A. R. Zolotarev, M. Ya. Vortman, N. S. Klimenko, and V. V. Shevchenko, Polim. Zh. 32, 383 (2010).

    Google Scholar 

  12. I. Honma, S. Nomura, and H. Nacajima, J. Membr. Sci. 185, 83 (2001).

    Article  CAS  Google Scholar 

  13. R. Thangamuthu and C. W. Lin, J. Power Sources 150, 48 (2005).

    Article  CAS  Google Scholar 

  14. G. Ye, C. A. Hayden, and G. R. Goward, Macromolecules 40, 1529 (2007).

    Article  CAS  Google Scholar 

  15. J. H. Zou, Y. B. Zhao, and W. F. Shi, J. Membr. Sci. 245, 35 (2004).

    Article  CAS  Google Scholar 

  16. S. Subianto, M. K. Mistry, N. R. Choudhury, N. K. Dutta, and R. Knott, Appl. Mater. Int. 1, 1173 (2009).

    Article  CAS  Google Scholar 

  17. A. Mahreni, A. B. Mohamad, A. A. H. Kadhum, W. R. W. Daud, and S. E. Iyuke, J. Membr. Sci. 327, 32 (2009).

    Article  CAS  Google Scholar 

  18. C. Hartmann-Thompson, A. Merrington, P. I. Carver, D. L. Keeley, J. L. Rousseau, D. Hucul, K. J. Bruza, L. S. Thomas, S. E. Keinath, R. M. Nowak, D. M. Katona, and P. R. Santurri, J. Appl. Polym. Sci. 110, 958 (2008).

    Article  CAS  Google Scholar 

  19. B. Decker, C. Hartmann-Thompson, P. I. Carver, S. E. Keinath, and P. R. Santurri, Chem. Mater. 22, 942 (2010).

    Article  CAS  Google Scholar 

  20. J. Choi, K. M. Lee, R. Wycisk, P. N. Pintauro, and P. T. Mather, J. Electrochem. Soc. B 157, 914 (2010).

    Article  CAS  Google Scholar 

  21. V. V. Shevchenko, N. S. Klimenko, A. V. Stryutskii, E. A. Lysenkov, M. Ya. Vortman, and V. M. Rudakov, Ukr. Khim. Zh. 77, 66 (2011).

    CAS  Google Scholar 

  22. Z. Zhang, G. Liang, and T. Lu, J. Appl. Polym. Sci. 103, 2608 (2007).

    Article  CAS  Google Scholar 

  23. D. S. Kim, H. B. Park, J. W. Rhim, and Y. M. Lee, Solid State Ionics 176, 117 (2005).

    Article  CAS  Google Scholar 

  24. Yu. S. Lipatov, V. V. Shilov, Yu. P. Gomza, and N. E. Kruglyak, X-Ray Methods of Polymer Systems Investigation (Naukova Dumka, Kiev, 1982) [in Russian].

    Google Scholar 

  25. C. G. Vonk, J. Appl. Crystallogr. 8, 340 (1975).

    Article  Google Scholar 

  26. G. Beaucage, J. Appl. Crystallogr. 28, 717 (1995).

    Article  CAS  Google Scholar 

  27. L. J. Bellamy, The Infrared Spectra of Complex Molecules (Methuen, London, 1954; Inostrannaya Literatura, Moscow, 1963).

    Google Scholar 

  28. E. Pretsch, F. Bühlmann, and C. Affolter, Structure Determination of Organic Compounds: Tables of Spectral Data (Springer, 2000; Mir, Moscow, 2006).

    Book  Google Scholar 

  29. B. D. Ghosh, K. F. Lott, and J. E. Ritchie, Chem. Mater. 18, 504 (2006).

    Article  CAS  Google Scholar 

  30. B. D. Ghosh, K. F. Lott, and J. E. Ritchie, Chem. Mater. 17, 661 (2005).

    Article  CAS  Google Scholar 

  31. K. F. Lott, B. D. Ghosh, and J. E. Ritchie, J. Electrochem. Soc. 153, 2044 (2006).

    Article  CAS  Google Scholar 

  32. M. J. Park and N. P. Balsara, Macromolecules 43, 292 (2010).

    Article  CAS  Google Scholar 

  33. J. Hou, J. Li, and L. A. Madsen, Macromolecules 43, 347 (2010).

    Article  CAS  Google Scholar 

  34. R. Bonart, L. Morbitzer, and E. Müller, J. Macromol. Sci. B 9, 447 (1974).

    Article  CAS  Google Scholar 

  35. A. Kyritsis, P. Pissis, and J. Grammatikakis, J. Polym. Sci., Part B: Polym. Phys. 33, 1737 (1995).

    Article  CAS  Google Scholar 

  36. F. M. Gray, Solid Polymer Electrolytes: Fundamentals and Technological Applications (VCH, New York, 1991).

    Google Scholar 

  37. O. V. Bushkova, T. V. Sofronova, B. I. Lirova, and V. M. Zhukovskii, J. Electrochem. Soc. 41, 468 (2005).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Shevchenko.

Additional information

Original Russian Text © V.V. Shevchenko, A.V. Stryutskii, V.N. Bliznyuk, N.S. Klimenko, A.V. Shevchuk, E.A. Lysenkov, Yu.P. Gomza, 2014, published in Russian in Vysokomolekulyarnye Soedineniya, Ser. B, 2014, Vol. 56, No. 2, pp. 202–215.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shevchenko, V.V., Stryutskii, A.V., Bliznyuk, V.N. et al. Synthesis, structure, and properties of anhydrous organic-inorganic proton-exchange membranes based on sulfonated derivatives of octahedral oligosilsesquioxanes and α,ω-di(triethoxysilyl) oligo(oxyethylene urethane urea). Polym. Sci. Ser. B 56, 216–228 (2014). https://doi.org/10.1134/S1560090414020158

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560090414020158

Keywords

Navigation