Skip to main content
Log in

A diffusion model of the development of concentration heterogeneities in a photopolymerizable environment with allowance for the limited compatibility of a monomer and a polymer

  • Theory and Modeling
  • Published:
Polymer Science Series B Aims and scope Submit manuscript

Abstract

A diffusion model of the development of concentration heterogeneities of a photopolymerizable composite that takes into account the transition of the monomer-polymer system from the homophase state to the heterophase state with an increase in conversion is proposed. Numerical simulation shows that a significant increase in the amplitude of these heterogeneities is determined not only by the microsyneresis of the composite but also by the efficiency of their development in the homophase state at the initial stage of polymerization. The possibility of controlling the optical properties of the final polymeric material via initiation of the polymerization by radiation of different intensities in the regions of the homophase and heterophase states of the composite is discussed. The numerical-simulation results are experimentally verified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. G. Kloosterboer, Adv. Polym. Sci. 84, 1 (1988).

    Article  CAS  Google Scholar 

  2. V. M. Treushnikov and S. A. Chesnokov, J. Photochem. Photobiol. A 196, 201 (2008).

    Article  CAS  Google Scholar 

  3. M. A. Baten’kin, S. N. Mensov, and A. V. Romanov, Opt. Zh. 75(5), 34 (2008).

    Google Scholar 

  4. A. I. Levinskii, S. N. Mensov, A. I. D’yachkov, and V. P. Zubov, Vysokomol. Soedin., Ser. B 31, 631 (1989).

    CAS  Google Scholar 

  5. G. A. Abakumov, S. N. Mensov, and A. V. Semenov, Opt. Spektrosk. 86, 1029 (1999).

    CAS  Google Scholar 

  6. G. A. Abakumov, S. N. Mensov, A. V. Semenov, and S. A. Chesnokov, Polymer Science, Ser. B 42, 180 (2000).

    Google Scholar 

  7. G. A. Abakumov, M. A. Baten’kin, S. N. Mensov, A. V. Romanov, and S. A. Chesnokov, Materialovedenie, No. 11, 39 (2007).

  8. V. I. Irzhak and S. M. Mezhikovskii, Usp. Khim. 77, 79 (2008).

    Google Scholar 

  9. T. I. Izaak and O. V. Vodyankina, Usp. Khim. 78, 80 (2009).

    Article  Google Scholar 

  10. M. A. Baten’kin, A. N. Konev, S. N. Mensov, and S. A. Chesnokov, Polymer Science, Ser. A 53, 558 (2011).

    Article  Google Scholar 

  11. S. N. Mensov and A. V. Romanov, Opt. Spektrosk. 101, 692 (2006).

    Article  Google Scholar 

  12. A. A. Berlin, G. V. Korolev, T. Ya. Kefeli, and Yu. M. Severgin, Acrylic Oligomers and Related Materials (Khimiya, Moscow, 1983) [in Russian].

    Google Scholar 

  13. G. V. Korolev, Usp. Khim. 72, 222 (2003).

    Article  Google Scholar 

  14. A. E. Chalykh, Water Diffusion in Polymer Systems (Khimiya, Moscow, 1987) [in Russian].

    Google Scholar 

  15. J. V. Kelly, M. R. Gleeson, and C. E. Close, Opt. Express 13, 6990 (2005).

    Article  CAS  Google Scholar 

  16. S. M. Mezhikovskii and V. I. Irzhak, Chemical Physics of Oligomer Curing (Nauka, Moscow, 2008) [in Russian].

    Google Scholar 

  17. A. A. Berlin, T. Ya. Kefeli, and G. V. Korolev, Polyetheracrylates (Nauka, Moscow, 1967) [in Russian].

    Google Scholar 

  18. S. Wales, Phase Equilibria in Chemical Technology (Mir, Moscow, 1989) [in Russian].

    Google Scholar 

  19. A. A. Tager, Physical Chemistry of Polymers (Khimiya, Moscow, 1968) [in Russian].

    Google Scholar 

  20. R. Lattés and J.-L. Lions, Méthode de quasi-réversibilité et applications (Paris, 1967; Mir, Moscow, 1970).

  21. S. I. Kabanikhin, Reverse and Incorrect Problems (Sib. Nauchn. Izd., Novosibirsk, 2009) [in Russian].

    Google Scholar 

  22. N. N. Kalitkin, Numerical Computation Methods (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  23. V. P. Skripov and A. V. Skripov, Usp. Fiz. Nauk 128, 193 (1979).

    Article  CAS  Google Scholar 

  24. V. P. Savel’yanov, General Chemical Technology of Polymers (Integralpress, Moscow, 2000) [in Russian].

    Google Scholar 

  25. Plastics Technology, Ed. by V.V. Korshak (Khimiya, Moscow, 1985) [in Russian].

    Google Scholar 

  26. S. A. Chesnokov, V. K. Cherkasov, G. A. Abakumov, O. N. Mamysheva, Yu. V. Chechet, and V. I. Nevodchikov, Izv. Akad. Nauk, Ser. Khim., No. 12, 2258 (2001).

  27. S. D. Khizhnyak, M. N. Malanin, and P. M. Pakhomov, Polymer Science, Ser. B 50, 158 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Baten’kin.

Additional information

Original Russian Text © M.A. Baten’kin, S.N. Mensov, 2012, published in Russian in Vysokomolekulyarnye Soedineniya, Ser. B, 2012, Vol. 54, No. 10, pp. 1576–1584.

This work was supported by the Russian Foundation for Basic Research (project nos. 12-03.01092-a, 11-03-12184-ofi-m, and 11-03-97040-p-povolzh’e-a); the Division of Chemistry and Materials Sciences, Russian Academy of Sciences, within the framework of the program of basic research Creation and Study of Macromolecules and Macromolecular Structures of New Generations; and a grant from the president of the Russian Federation (NSh.1113.2012.3).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baten’kin, M.A., Mensov, S.N. A diffusion model of the development of concentration heterogeneities in a photopolymerizable environment with allowance for the limited compatibility of a monomer and a polymer. Polym. Sci. Ser. B 54, 496–503 (2012). https://doi.org/10.1134/S1560090412100016

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560090412100016

Keywords

Navigation