Well-defined nanofiberous polystyrene nanocomposites with twofold chains by ATRP

Abstract

Polystyrene nanocomposites, being a combination of nanoclay-attached and free polystyrene chains were prepared using in situ atom transfer radical polymerization. Subsequently, they were electrospun to form fibers with diameter varying from 450–700 nm according to scanning electron microscopy data; in addition, the transmission electron microscopy and x-ray diffraction analysis revealed that nanoclay layers were oriented along the nanofiber axis during the electrospinning process. Molecular weight of the extracted free polymer chains from the nanocomposites is higher than the attached chains. However, Anchored chains are characterized by higher polydispersity index in comparison with the free ones. Polydispersity index of polymer chains increases by the addition of nanoclay. Thermogravimetric analysis results shows that increasing clay content leads to a decrease in the quantity of polymer chains attached to the clay surface.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    B. N. Jang, M. Costache, and C.A. Wilkie, Polymer 46, 10678 (2005).

    Article  CAS  Google Scholar 

  2. 2.

    F. Caruso, M. Spasova, A. Susha, H. Giersig, and R.A. Caruso, Chem. Mater. 13, 109 (2001).

    Article  CAS  Google Scholar 

  3. 3.

    S. Nazarenko, P. Meneghetti, P. Julmon, B. Olson, and S. Qutubuddin, J. Polym. Sci.: Part B: Polym. Phys. 45, 1733 (2007).

    Article  CAS  Google Scholar 

  4. 4.

    D. Benoit, V. Chaplinski, R. Braslau, and C.J. Hawker, J. Am. Chem. Soc. 121, 3904 (1999).

    Article  CAS  Google Scholar 

  5. 5.

    L. Bentein, D.R. D’hooge, M.F. Reyniers, and G.B. Marin, Macromol. Theory and Simul. 20, 238 (2011).

    Article  CAS  Google Scholar 

  6. 6.

    M. Salami-Kalajahi, V. Haddadi-Asl, F. Behboodi-Sadabad, S. Rahimi-Razin, and H. Roghani-Mamaqani, Polym. Compos. 33, 215 (2012).

    Article  CAS  Google Scholar 

  7. 7.

    P. Gerstel and Ch. Barner-Kowollik, Macromol. Rapid Commun. 32, 444 (2011).

    Article  CAS  Google Scholar 

  8. 8.

    M. Najafi, H. Roghani-Mamaqani, M. Salami-Kalajahi, and V. Haddadi-Asl, Chin. J. Polym. Sci. 27, 195 (2009).

    Article  CAS  Google Scholar 

  9. 9.

    M. Najafi, V. Haddadi-Asl, M. Salami-Kalajahi, and H. Roghani-Mamaqani, e-Polymers 030 (2009).

  10. 10.

    H. Roghani-Mamaqani, V. Haddadi-Asl, M. Najafi, and M. Salami-Kalajahi, J. Appl. Polym. Sci. 123, 409, 2012.

    Article  CAS  Google Scholar 

  11. 11.

    M. A. Semsarzadeh and A. Mirzaei, Iran Polym. J. 12, 67 (2003).

    CAS  Google Scholar 

  12. 12.

    K. Khezri, V. Haddadi-Asl, H. Roghani-Mamaqani, and M. Salami-Kalajahi, Polym. Compos. 32, 1979, 2011.

    Article  CAS  Google Scholar 

  13. 13.

    M. Najafi, H. Roghani-Mamaqani, M. Salami-Kalajahi, and V. Haddadi-Asl, Adv. Poly. Tech. 30, 257 (2011).

    Article  CAS  Google Scholar 

  14. 14.

    W. Jakubowski and K. Matyjaszewski, Angew. Chem. 118, 4594 (2006).

    Article  Google Scholar 

  15. 15.

    J. A. Matthews, G. E. Wnek, D. G. Simpson, and G.L. Bowlin, Biomacromolecules 3, 232 (2002).

    Article  CAS  Google Scholar 

  16. 16.

    P. W. Gibson, H. L. Schreuder-Gibson, and D. Rivin, AIChE J. 45, 190 (1999).

    Article  CAS  Google Scholar 

  17. 17.

    S. Psycharakis, A. Tosca, V. Melissinaki, A. Giakoumaki, and A. Ranella, Biomed. Mater. 6, 1748 (2011).

    Article  Google Scholar 

  18. 18.

    Z. M. Huang, Y.Z. Zhang, M. Kotaki, and S. Ramakrishna, Compos. Sci. Technol. 63, 2223 (2003).

    Article  CAS  Google Scholar 

  19. 19.

    X. Liu, Zh. Jiang, and J. Han, Adv. Mater. Res. 148, 869 (2011).

    Article  Google Scholar 

  20. 20.

    D. Xu, D. Chen, G. Guo, L. Gui, and Y. Tang, Adv. Mater. 11, 519 (2000).

    Google Scholar 

  21. 21.

    W. Teo, R. Inai, and S. Ramakrishna, Sci. Technol. Adv. Mater. 12, 1468 (2011).

    Article  Google Scholar 

  22. 22.

    H. Roghani-Mamaqani, V. Haddadi-Asl, M. Najafi, and M. Salami-Kalajahi, Polym. Compos. 31, 1829 (2010).

    Article  CAS  Google Scholar 

  23. 23.

    H. Roghani-Mamaqani, V. Haddadi-Asl, M. Najafi, and M. Salami-Kalajahi, AIChE J. 57, 1873 (2011).

    Article  CAS  Google Scholar 

  24. 24.

    H. Roghani-Mamaqani, V. Haddadi-Asl, M. Najafi, and M. Salami-Kalajahi, J. Appl. Polym. Sci. 120, 1431 (2011).

    Article  CAS  Google Scholar 

  25. 25.

    L. Hatami, V. Haddadi-Asl, H. Roghani-Mamaqani, L. Ahmadian-Alam, and M. Salami-Kalajahi, Polym. Composites 32, 967 (2011).

    Article  CAS  Google Scholar 

  26. 26.

    D. Lerari, S. Peeterbroeck, S. Benali, A. Benaboura, and Ph. Dubois, J. Appl. Polym. Sci. 121, 1355 (2011).

    Article  CAS  Google Scholar 

  27. 27.

    W. Ma, H. Otsuka, and A. Takahara, Chem. Commun. 47, 5813 (2011).

    Article  CAS  Google Scholar 

  28. 28.

    G.D. Fu, L.Q. Xu, F. Yao, K. Zhang, X.F. Wang, M.F. Zhu, and S.Z. Nie, Appl. Mater. Interfaces 1, 239 (2009).

    Article  CAS  Google Scholar 

  29. 29.

    G.D. Fu, J.Y. Lei, C. Yao, X.S. Li, and F. Yao, Macromolecules 41, 6854 (2008).

    Article  CAS  Google Scholar 

  30. 30.

    T. Uyar and F. Besenbacher, Polymer 49, 5336 (2008).

    Article  CAS  Google Scholar 

  31. 31.

    M. Wang, A.J. Hsieh, and G.C. Rutledge, Polymer 46, 3407 (2005).

    Article  CAS  Google Scholar 

  32. 32.

    J.H. Hong, E.H. Jeong, H.S. Lee, D.H. Baik, S.W. Seo, and J.H. Youk, J. Polym. Sci.: Part B: Polym. Phys. 43, 3171 (2005).

    Article  CAS  Google Scholar 

  33. 33.

    A. Akelah, A. Rehab, T. Agag, and M. Betiha, J. Appl. Polym. Sci. 103, 3739 (2007).

    Article  CAS  Google Scholar 

  34. 34.

    H. Zhao, S. Argoti, P. Farrel, and A. Shipp, J. Polym. Sci. Part A: Polym. Chem. 42, 916 (2004).

    Article  CAS  Google Scholar 

  35. 35.

    X. S. Wang and S.P. Armes, Macromolecules 33, 6640 (2000).

    Article  CAS  Google Scholar 

  36. 36.

    H. Fong, W. Liu, C.S. Wang, and R.A. Vaia, Polymer 43, 775 (2002).

    Article  CAS  Google Scholar 

  37. 37.

    J. Luna-Xavier, A. Guyot, and E. Bourgeat-Lami, Polym. Int. 53, 609 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hossein Roghani-Mamaqani.

Additional information

The article is published in the original.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Roghani-Mamaqani, H., Haddadi-Asl, V., Najafi, M. et al. Well-defined nanofiberous polystyrene nanocomposites with twofold chains by ATRP. Polym. Sci. Ser. B 54, 153–160 (2012). https://doi.org/10.1134/S1560090412030074

Download citation

Keywords

  • Montmorillonite
  • Polymer Science Series
  • Atom Transfer Radical Polymerization
  • Composite Nanofibers
  • Reversible Addition Fragmentation Chain Transfer