Skip to main content
Log in

Hyperbranched polylysines: Mechanism of formation

  • Synthesis
  • Published:
Polymer Science Series B Aims and scope Submit manuscript

Abstract

To gain insight into the mechanism treating formation of hyperbranched polylysines through the polymerization of N ɛ-carbobenzoxylysine N-carboxyanhydride under conditions of the reductive removal of a N ɛ-carbobenzoxy group, hyperbranched polylysine has been synthesized with the use of trifluoroacetic acid as a terminator in the polymerization of N-carboxyanhydride. The structure of the polymers is studied by capillary electrophoresis, low-pressure gel-permeation chromatography, circular dichroism, and enzymatic hydrolysis with trypsin. At the first stage of synthesis, a low-molecular-mass strongly branched core of the polymer is formed. At the second stage, polylysine chains are grafted via one point onto amino groups of N-terminal lysine moieties of the low-molecular-mass core through their carboxyl ends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. T. Hermanson, Bioconjugate Techniques (Academic, New York, 1996).

    Google Scholar 

  2. Vector Targeting for Theraupeutic Gene Delivery, Ed. by D. T. Curiel and J. T. Douglas (Wiley-Liss, Hoboken, 2002).

    Google Scholar 

  3. J. F. Kukowska-Latallo, A. U. Bielinska, J. Johnson, et al., Proc. Natl. Acad. Sci. U. S. A. 93, 4897 (1996).

    Article  CAS  Google Scholar 

  4. W. Tansey, S. Ke, X.-Y. Cao, et al., J. Controlled Release 94, 39 (2004).

    Article  CAS  Google Scholar 

  5. M. Ohsaki, T. Okuda, A. Wada, et al., Bioconjug. Chem. 13, 510 (2002).

    Article  CAS  Google Scholar 

  6. T. Okuda, S. Kidoaki, M. Ohsaki, et al., Org. Biomol. Chem. 1, 1270 (2003).

    Article  CAS  Google Scholar 

  7. G. P. Vlasov, V. I. Korol’kov, G. A. Pankova, et al., Bioorg. Khim. 30, 1 (2004).

    Google Scholar 

  8. T. Okuda, A. Sugiyama, T. Niidome, and H. Aoyagi, Biomaterials 25, 537 (2004).

    Article  CAS  Google Scholar 

  9. G. P. Vlasov, V. I. Korol’kov, I. A. Gur’yanov, et al., Bioorg. Khim. 31, 167 (2005).

    CAS  Google Scholar 

  10. G. P. Vlasov, Bioorg. Khim. 32, 227 (2006).

    CAS  Google Scholar 

  11. H. Polland, J.-S. Remy, G. Loussouarn, and S. Demolombe, Biol. Chem. 273, 7507 (1998).

    Article  Google Scholar 

  12. A. Boletta, A. Benigni, J. Lutz, et al., Hum. Gene Ther. 8, 1243 (1997).

    Article  CAS  Google Scholar 

  13. H. Faneca, S. Simoes, and M. C. Pedroso De Lima, Biochem. Biophys. Acta 1567, 23 (2002).

    Article  CAS  Google Scholar 

  14. J. P. Behr, B. Deminea, J. P. Loeffler, and J. Perez-Mutul, Proc. Natl. Acad. Sci. U. S. A. 86, 6982 (1989).

    Article  CAS  Google Scholar 

  15. G. P. Vlasov, G. M. Pavlov, N. V. Bayanova, et al., Dokl. Akad. Nauk 399, 366 (2004).

    Google Scholar 

  16. I. Tsogas, T. Theodossiou, Z. Sideratuo, et al., Biomacromolecules 8, 3263 (2007).

    Article  CAS  Google Scholar 

  17. G. P. Vlasov, I. I. Tarasenko, S. V. Valueva, et al., Polymer Science, Ser. A 47, 422 (2005) [Vysokomol. Soedin., Ser. A 47, 731 (2005)].

    Google Scholar 

  18. G. P. Vlasov, A. P. Filippov, I. I. Tarasenko, et al., Polymer Science, Ser. A 50, 374 (2008) [Vysokomol. Soedin., Ser. A 50, 589 (2008)].

    Article  Google Scholar 

  19. W. Daly and D. Poche, Tetrahedron Lett. 29, 5859 (1988).

    Article  CAS  Google Scholar 

  20. G. P. Vlasov, G. D. Rudkovskaya, L. A. Ovsyannikova, et al., Vysokomol. Soedin., Ser. B 25, 176 (1983).

    Google Scholar 

  21. G. P. Vlasov, G. D. Rudkovskaya, L. A. Ovsyannikova, et al., Vysokomol. Soedin., Ser. B 28, 439 (1986).

    CAS  Google Scholar 

  22. G. R. Newkome, C. N. Moorefield, and F. Vogtle, Dendritic Molecules (Concepts, Synthesis, Perspectives) (VCH, Weinheim, 1996).

    Book  Google Scholar 

  23. E. V. Anufrieva, M. G. Krakovyak, T. D. Anan’eva, et al., Polymer Science, Ser. A 49, 671 (2007) [Vysokomol. Soedin., Ser. A 49, 1013 (2007)].

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. P. Vlasov.

Additional information

Original Russian Text © G.P. Vlasov, I.I. Tarasenko, G.A. Pankova, I.E. Il’ina, V.I. Vorob’ev, 2009, published in Vysokomolekulyarnye Soedineniya, Ser. B, 2009, Vol. 51, No. 8, pp. 1559–1566.

This work was supported by the Russian Foundation for Basic Research, project nos. 04-03-33032 and 07-03-00290.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vlasov, G.P., Tarasenko, I.I., Pankova, G.A. et al. Hyperbranched polylysines: Mechanism of formation. Polym. Sci. Ser. B 51, 296–302 (2009). https://doi.org/10.1134/S1560090409070136

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560090409070136

Keywords

Navigation