Skip to main content
Log in

Neutron Activation Analysis of Rare Earth Elements (Sc, La, Ce, Nd, Sm, Eu, Tb, Dy, Yb) in the Diagnosis of Ecosystems of Donbass

  • NEUTRON PHYSICS
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

Under conditions of intense anthropogenic impact, the territory of modern Donbass is geochemically contrasting environment. Concentrations of rare earth elements (Sc, La, Ce, Nd, Sm, Eu, Tb, Dy, Yb) in the natural ecosystems of the Northern Azov region (Central Donbass) were determined by indicator plants using neutron activation analysis. An open landscape experiment was carried out using moss Ceratodon purpureus (Hedw.) Brid. which has a high information response in the assessment of technogenic impacts. It allowed to establish the levels of regional contamination with rare earth elements, to identify correlation groups of related processes in the structural and functional features of indicator. The identified localities of geochemical heterogeneities in ecotopes are responsible for the adaptation of plants under stressful conditions. The most informative structural units of plants indicating the contamination with rare earth elements are abnormalities in the structure (terates, teratomorphs), violation of the morphogenesis processes of the embryonic apparatus of plants and areas of vegetative organs. Correlation analysis and principle component analysis were applied to reveal the relationship between the elements and abnormalities in the structure of plants. Relative accumulation factor, contamination factor and enrichment factor were calculated to evaluate the level of environment pollution and to identify the origin of elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. S. S. Pavlov, A. Yu. Dmitriev, and M. V. Frontasyeva, “Automation system for neutron activation analysis at the reactor IBR-2, Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia,” J. Radioanal. Nucl. Chem. 309, 27–38 (2016). https://doi.org/10.1007/s10967-016-4864-8

    Article  Google Scholar 

  2. A. A. Antsiferova, M. Yu. Kopaeva, V. N. Kochkin, A. A. Reshetnikov, and P. K. Kashkarov, “Neurotoxicity of silver nanoparticles and non-linear development of adaptive homeostasis with age,” Micromachines 14, 984 (2023). https://doi.org/10.3390/mi14050984

    Article  Google Scholar 

  3. L. H. Khiem, K. Sera, T. Hosokawa, L. D. Nam, and N. H. Quyet, “Active moss biomonitoring technique for atmospheric elemental contamination in Hanoi using proton induced X-ray emission,” J. Radioanal. Nucl. Chem. 325, 515–525 (2020). https://doi.org/10.1007/s10967-020-07253-y

    Article  Google Scholar 

  4. A.O lacel, S. Ujeniuc, R. Suvaila, B. Alexandrescu, and I. Pojar, “Isotopic patterns via neutron irradiation and gamma spectrometry of environmental samples,” Chem. Phys. Impacts 4, 100065 (2022).

  5. V. Takeshita, G. V. Munhoz-Garcia, A. E. S. Pereira, V. L. Tornisielo, and L. F. Fraceto, “Radiometric strategy to track nanopesticides: An important approach to understand the fate, mechanisms of action and toxicity,” Trends Anal. Chem. 165, 117156 (2023). https://doi.org/10.1016/j.trac.2023.117156

    Article  Google Scholar 

  6. J. C. Massante, “Mining disaster: restore habitats now,” Nature 528, 39 (2015). https://doi.org/10.1038/528039c

    Article  ADS  Google Scholar 

  7. Z. Bian, H. Yu, J. Hou, and S. Mu, “Influencing factors and evaluation of land degradation of 12 coal mine areas in Western China,” J. China Coal Soc. 45, 338–350 (2020).

    Google Scholar 

  8. J. Peng, Y. Pan, Y. Liu, H. Zhao, and Y. Wang, “Linking ecological degradation risk to identify ecological security patterns in a rapidly urbanizing landscape,” Habitat Int. 71, 110–124 (2018). https://doi.org/10.1016/j.habitatint.2017.11.010

    Article  Google Scholar 

  9. R. Neamtu, B. Sluser, O. Plavan, and C. Teodosiu, “Environmental monitoring and impact assessment of Prut River cross-border pollution,” Environ. Monit. Assess. 193, 09110 (2021). https://doi.org/10.1007/s10661-021-09110-1

    Article  Google Scholar 

  10. S. A. Yeprintsev, S. V. Shekoyan, L. A. Lepeshkina, A. A. Voronin, and M. A. Klevtsova, “Technologies for creating geographic information resources for monitoring the socio-ecological conditions of cities,” IOP Conf. Ser.: Mat. Sci. Eng. 582, 012012 (2019). https://doi.org/10.1088/1757-899X/582/1/012012

  11. I. T. Bayouli, H. T. Bayouli, A. Dell’Oca, E. Meers, and J. Sun, “Ecological indicators and bioindicator plant species for biomonitoring industrial pollution: Eco-based environmental assessment,” Ecol. Indic. 125, 107508 (2021). https://doi.org/10.1016/j.ecolind.2021.107508

    Article  Google Scholar 

  12. I. I. Zinicovscaia, K. N. Vergel, A. I. Safonov, N. S. Yushin, A. V. Kravtsova, and O. Chaligava, “Using moss Ceratodon purpureus (Hedw.) Brid for assessing the technogenic pollution (Ni, Zn, Mn, Al, Se, Cs, La, and Sm) of transformed ecotopes of Donbass,” Ecosyst. Transform. 6, 22–38 (2023). https://doi.org/10.23859/estr-220726

    Article  Google Scholar 

  13. A. I. Safonov, A. S. Alemasova, I. I. Zinicovscaia, K. N. Vergel, N. S. Yushin, A. V. Kravtsova, and O. Chaligava, “Morphogenetic abnormalities of bryobionts in geochemically contrasting conditions of Donbass,” Geochem. Int. 68, 1032–1044 (2023). https://doi.org/10.1134/S0016702923100117

    Article  Google Scholar 

  14. A. Safonov and A. Glukhov, “Ecological phytomonitoring in Donbass using geoinformational analysis,” BIO Web Conf. 31, 00020 (2021). https://doi.org/10.1051/bioconf/20213100020

  15. D. Li, C. Jiang, C. Jiang, F. Liu, and Q. Zhu, “Geochemical characteristics and migration patterns of rare earth elements in coal mining subsidence lakes under the influence of multiple factors,” Sci. Total Environ. 904, 166668 (2023). https://doi.org/10.1016/j.scitotenv.2023.166668

    Article  ADS  Google Scholar 

  16. N. M. Mupatsi and W. Gwenzi, “Chapter 3–High-Technology Rare Earth Elements in the Soil-Plant System: Occurrence, Behaviour, and Fate,” in Emerging Contaminants in the Terrestrial-Aquatic-Atmosphere Continuum (2022), pp. 29–46. https://doi.org/10.1016/B978-0-323-90051-5.00025-0

  17. W. Valter da Silveira Pereira, S. J. Ramos Azevedo, L. C. Melo, Y. N. Dias, G. C. Martins, L. C. Gonçalves Ferreira, and A. R. Fernandes, “Human and environmental exposure to rare earth elements in gold mining areas in the northeastern Amazon,” Chemosphere 340, 139824 (2023). https://doi.org/10.1016/j.chemosphere.2023.139824

    Article  Google Scholar 

  18. A. da Silva de Freitas, L. L. de Oliveira Pompermayer, A. D.de Oliveira Santos, M. T. Lima do Nascimento, T. Dillenburg Saint’Pierre, R. A. Hauser-Davis, J. A. Baptista Neto, and E. Monteiro da Fonseca, “Rare earth elements as sediment contamination tracers in a coastal lagoon in the state of Rio de Janeiro, Brazil,” J. Trace Elem. Miner. 4, 100068 (2023). https://doi.org/10.1016/j.jtemin.2023.100068

    Article  Google Scholar 

  19. Y. W. Shen, C. X. Zhao, H. Zhao, S. F. Dong, Q. Guo, J. J. Xie, M. L. Lv, and C. G. Yuan, “Insight study of rare earth elements in PM2.5 during five years in a Chinese inland city: Composition variations, sources, and exposure assessment,” J. Environ. Sci. 138, 439—449 (2024). https://doi.org/10.1016/j.jes.2023.04.015

    Article  Google Scholar 

  20. Q. Liu, H. Shi, Y. An, J. Ma, W. Zhao, Y. Qu, H. Chen, L. Liu, and F. Wu, “Source, environmental behavior and potential health risk of rare earth elements in Beijing urban park soils,” J. Hazard. Mater. 445, 130451 (2023). https://doi.org/10.1016/j.jhazmat.2022.130451

    Article  Google Scholar 

  21. A. Zaghloul, M. Saber, S. Gadow, and F. Awad, “Biological indicators for pollution detection in terrestrial and aquatic ecosystems,” Bull. Natl. Res. Centre 44, 385 (2020).

    Article  Google Scholar 

  22. P. K. Rai, C. Sonne, and K.-H. Kim, “Heavy metals and arsenic stress in food crops: Elucidating antioxidative defense mechanisms in hyperaccumulators for food security, agricultural sustainability, and human health,” Sci. Total Environ. 874, 162327 (2023). https://doi.org/10.1016/j.scitotenv.2023.162327

    Article  ADS  Google Scholar 

  23. S. Allajbeu, N. S. Yushin, and F. Qarri, “Atmospheric deposition of rare earth elements in Albania studied by the moss biomonitoring technique, neutron activation analysis and GIS technology,” Environ. Sci. Pollution Res. 23, 14087–14101 (2016). https://doi.org/10.1007/s11356-016-6509-4

    Article  Google Scholar 

  24. K. Bačeva Andonovska, R. Šajn, C. Tănăselia, and T. Stafilov, “Moss as an indicator of rare earth elements across the area of the volcanogenic deposit in the Allchar Locality, North Macedonia,” Air Qual., Atmos. Health 16, 1381–1391 (2023). https://doi.org/10.1007/s11869-023-01348-7

    Article  Google Scholar 

  25. M. Aničić Urošević, M. Krmar, D. Radnović, G. Jovanović, T. Jakšić, P. Vasić, and A. Popović, “The use of moss as an indicator of rare earth element deposition over large area,” Ecol. Indic. 109, 105828 (2020). https://doi.org/10.1016/j.ecolind.2019.105828

    Article  Google Scholar 

  26. A. I. Safonov and E. A. Germonova, “Ecological Phytomonitoring Networks in Donbass,” Probl. Ecol. Nat. Prot. Technogenic Region 34, 37–42 (2019).

    Google Scholar 

  27. D. Marasova, V. M. Zolotukhin, N. A. Zolotukhina, O. Volkova, and M. Yazevich, “Chemical monitoring of the socio-ecological situation in resource-producing regions,” E3S Web Conf. 315, 02003 (2021). https://doi.org/10.1051/e3sconf.202131502003

  28. S. Tomasini and I. Theilade, “Local ecological knowledge indicators for wild plant management: Autonomous local monitoring in Prespa, Albania,” Ecol. Indic. 101, 1064–1076 (2019). https://doi.org/10.1016/j.ecolind.2019.01.076

    Article  Google Scholar 

  29. T. V. Avraimova and A. I. Safonov, “Ecological developments in Donbass: bibliographic control and promotion of research,” Sci. Tech. Libr. 3, 30–42(2023). https://doi.org/10.33186/1027-3689-2023-3-30-42

    Article  Google Scholar 

  30. A. S. Alemasova and A. I. Safonov, “Heavy metals in phytosubstrates as indicators of anthropogenic air pollution in industrial region,” For. Bull. 26, 5–13 (2022). https://doi.org/10.18698/2542-1468-2022-6-5-13

    Article  Google Scholar 

  31. N. Krutskikh, “Modelling the structure of terrestrial landscapes in urban areas,” Quaestiones Geographicae 40, 39–49 (2021). https://doi.org/10.2478/quageo-2021-0003

    Article  Google Scholar 

  32. A. Safonov, “Ecological scales of indicator plants in an industrial region,” BIO Web Conf. 43, 03002 (2022). https://doi.org/10.1051/bioconf/20224303002

  33. A. I. Safonov, “Abnormalities of embryo structures in Donbass indicator plants 14, 5–18 (2022). https://doi.org/10.22281/2686-9713-2022-3-5-18

  34. A. I. Safonov, “Theratogenesis of indicator plants of industrial Donbass,” Diversity Plant World 1, 4–16 (2019). https://doi.org/10.22281/2686-9713-2019-1-4-16

    Article  Google Scholar 

  35. A. I. Safonov, “Phyto-qualimetry of toxic pressure and the degree of ecotopes transformation in Donetsk region,” Probl. Ecol. Nat. Prot. Technogenic Region 13, 52–59 (2013).

    Google Scholar 

  36. A.D. Bell, Plant Form: An Illustrated Guide to Flowering Plant Morphology (Oxford Univ. Press, New York, 1991).

    Google Scholar 

  37. M. A. Outram, M. Figueroa, J. Sperschneider, S. J. Williams, and P. N. Dodds, “Seeing is believing: exploiting advances in structural biology to understand and engineer plant immunity,” Curr. Opin. Plant Biol. 67, 102210 (2022). https://doi.org/10.1016/j.pbi.2022.102210

    Article  Google Scholar 

  38. I. Zinicovscaia, C. Hramco, O. Chaligava, N. Yushin, D. Grozdov, K. Vergel, and G. Duca, “Accumulation of potentially toxic elements in mosses collected in the Republic of Moldova,” Plants 10, 1–13 (2021). https://doi.org/10.3390/plants10030471

    Article  Google Scholar 

  39. K. Vergel, I. Zinicovscaia, N. Yushin, and S. Gundorina, “Assessment of atmospheric deposition in Central Russia using moss biomonitors, neutron activation analysis and GIS technologies,” J. Radioanal. Nucl. Chem. 325, 807–816 (2020). https://doi.org/10.1007/s10967-020-07234-1

    Article  Google Scholar 

  40. J. A. Fernandez, J. R. Aboal, and A. Carballeira, “Identification of pollution sources by means of moss bags,” Ecotoxicol. Environ. Saf. 59, 76–83 (1994). )https://doi.org/10.1016/j.ecoenv.2004.01.007

    Article  Google Scholar 

  41. C. R. Bern, K. Walton-Day, and D. L. Naftz, “Improved enrichment factor calculations through principal component analysis: Examples from soils near breccia pipe uranium mines, Arizona, USA,” Environ. Pollut. 248, 90–100 (2019). https://doi.org/10.1016/j.envpol.2019.01.122

    Article  Google Scholar 

  42. R. L. Rudnick and S. Gao, “The Composition of the Continental Crust,” in Treatise on Geochemistry Ed. by H. D. Holland and K. K. Turekian (Elsevier-Pergamon, Oxford, 2003), Vol. 3: The Crust, pp. 1–64. https://doi.org/10.1016/b0-08-043751-6/03016-4

  43. L. Chen, H. Zhang, M. Ding, A. T. Devlin, P. Wang, M. Nie, and K. Xie, “Exploration of the variations and relationships between trace metal enrichment in dust and ecological risks associated with rapid urban expansion,” Ecotoxicol. Environ. Saf. 212, 111944 (2021). https://doi.org/10.1016/j.ecoenv.2021.111944

    Article  Google Scholar 

  44. A. Sergeeva, I. Zinicovscaia, D. Grozdov, and N. Yushin, “Assessment of selected rare earth elements, HF, Th, and U in the Donetsk region using moss bags technique,” Atmos. Pollut. Res. 12, 101165 (2021). https://doi.org/10.1016/j.apr.2021.101165

    Article  Google Scholar 

  45. V. Balaram, “Potential future alternative resources for rare earth elements: opportunities and challenges,” Minerals 13, 425 (2023). https://doi.org/10.3390/min13030425

    Article  ADS  Google Scholar 

  46. Y. Tao, L. Shen, C. Feng, R. Yang, J. Qu, H. Ju, and Y. Zhang, “Distribution of rare earth elements (REEs) and their roles in plant growth: A review,” Environ. Pollut. 298, 118540 (2022). https://doi.org/10.1016/j.envpol.2021.118540

    Article  Google Scholar 

  47. A. Kolker, C. Scott, J. C. Hower, J. A. Vazquez, C. L. Lopano, and S. Dai, “Distribution of rare earth elements in coal combustion fly ash, determined by SHRIMP-RG ion microprobe,” Int. J. Coal Geol. 184, 1—10 (2017). https://doi.org/10.1016/j.coal.2017.10.002

    Article  Google Scholar 

  48. B. H. Alharbi, M. J. Pasha, M. D. Alotaibi, A. K. Alduwais, and M. A. S. Al-Shamsi, “Contamination and risk levels of metals associated with urban street dust in Riyadh, Saudi Arabia,” Environ. Sci. Pollut. Res. 27, 18475–18487 (2020). https://doi.org/10.1007/s11356-020-08362-7

    Article  Google Scholar 

  49. M.-C. Lafrenière, J.-F. Lapierre, D. E. Ponton, F. Guillemette, and M. Amyot, “Rare earth elements (REEs) behavior in a large river across a geological and anthropogenic gradient,” Geochim. Cosmochim. Acta 353, 129–141 (2023). https://doi.org/10.1016/j.gca.2023.05.019

    Article  ADS  Google Scholar 

  50. T. Zerizghi, Q. Guo, R. Wei, Z. Wang, C. Du, and Y. Deng, “Rare earth elements in soil around coal mining and utilization: Contamination, characteristics, and effect of soil physicochemical properties,” Environ. Pollut. 331, Part 2, 121788 (2023). https://doi.org/10.1016/j.envpol.2023.121788

    Article  Google Scholar 

  51. H. Liu, H. Guo, O. Pourret, Z. Wang, M. Liu, W. Zhang, Z. Li, B. Gao, Z. Sun, and P. Laine, “Geochemical signatures of rare earth elements and yttrium exploited by acid solution mining around an ion-adsorption type deposit: role of source control and potential for recovery,” Sci. Total Environ. 804, 150241 (2022). https://doi.org/10.1016/j.scitotenv.2021.150241

    Article  ADS  Google Scholar 

  52. L. Dai, L. Deng, W. Wang, Y. Li, L. Wang, T. Liang, X. Liao, J. Cho, C. Sonne, S. S. Lam and J. Rinklebe, “Potentially toxic elements in human scalp hair around China’s largest polymetallic rare earth ore mining and smelting area,” Environ. Int. 172, 107775 (2023). https://doi.org/10.1016/j.envint.2023.107775

    Article  Google Scholar 

  53. S. Cheng, W. Li, Y. Han, Y. Sun, P. Gao, and X. Zhang, “Recent process developments in beneficiation and metallurgy of rare earths: a review,” J. Rare Earths (2023, in press). https://doi.org/10.1016/j.jre.2023.03.017

  54. L. Dai, L. Wang, X. Wan, J. Yang, Y. Wang, T. Liang, H. Song, S. M. Shaheen, V. Antoniadis, and J. Rinklebe, “Potentially toxic elements exposure biomonitoring in the elderly around the largest polymetallic rare earth ore mining and smelting area in China,” Sci. Total Environ. 853, 158635 (2022).https://doi.org/10.1016/j.scitotenv.2022.158635

  55. Z. Li, T. Liang, K. Li, and P. Wang, “Exposure of children to light rare earth elements through ingestion of various size fractions of road dust in REEs mining areas,” Sci. Total Environ. 743, 140432 (2020).https://doi.org/10.1016/j.scitotenv.2020.140432

  56. C. Zhang, Q. Li, M. Zhang, N. Zhang, and M. Li, “Effects of rare earth elements on growth and metabolism of medicinal plants,” Acta Pharm. Sin. B 3, 20—24 (2013). https://doi.org/10.1016/j.apsb.2012.12.005

    Article  Google Scholar 

  57. Y. Tao, L. Shen, C. Feng, R. Yang, J. Qu, H. Ju, and Y. Zhang, “Distribution of rare earth elements (REEs) and their roles in plant growth: a review,” Environ. Pollut. 298, 118540 (2022). https://doi.org/10.1016/j.envpol.2021.118540

    Article  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Zinicovscaia.

Ethics declarations

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Table S1 .  The content of rare earth elements (С) in the control and exposed samples of indicator moss Ceratodon purpureus (Hedw.) Brid (µg/g) in the ecotopes of Donbass

Site

Sc

La

Ce

Nd

Sm

Eu

Tb

Dy

Yb

С

%*

С

%

С

%

С

%

С

%

С

%

С

%

С

%

С

%

1

8.1

6

29.1

9

54

9

27

12

4.5

10

0.72

18

0.49

5

2.9

18

1.48

12

2

6

6

17.9

9

32.6

9

13.8

13

3.1

10

0.41

27

0.381

5

2.2

18

1.34

12

3

4.39

6

13.6

9

27.5

9

13.5

12

2.4

10

0.56

15

0.315

5

1.26

17

1.14

12

4

5.6

6

14.8

9

24.1

9

14.1

14

2.48

10

0.53

28

0.307

5

2.6

19

0.97

12

5

6.3

6

14.2

9

27.7

9

11.8

16

2.29

10

0.32

20

0.295

5

1.6

19

1.12

12

6

5.4

6

14.9

9

27.6

9

14

13

2.79

10

0.77

15

0.4

5

1.8

20

1.57

11

7

4.89

6

12.8

9

26.6

9

10.6

14

2.62

9

0.57

15

0.333

5

1.4

21

1.15

12

8

5.6

6

14.1

9

28.6

9

15.3

13

2.74

10

0.46

21

0.361

5

2.6

19

1.38

12

9

4.35

6

12.4

9

21.4

9

12.1

14

2.18

10

0.5

18

0.276

5

1.49

19

1.02

12

10

3.83

4

10

9

19.7

9

13.3

16

1.94

10

0.38

20

0.269

5

1.8

19

0.88

11

11

6.45

4

24.9

9

47

9

24

14

4.2

9

0.89

15

0.515

5

2.9

19

1.58

11

12

7.16

4

22.4

9

43

9

22

14

4

10

0.68

19

0.511

5

2.8

14

1.58

11

13

7.07

4

19.5

9

33

9

24

15

3.6

10

0.72

18

0.468

5

3.3

19

1.44

11

14

5.01

4

14

9

28.1

9

12.2

16

2.61

9

0.55

16

0.322

5

1.6

19

1.01

11

15

4.35

4

13.3

9

24.7

9

14.7

16

2.46

9

0.54

16

0.3

5

2

19

0.86

11

16

6.6

4

16.4

9

31.6

9

16.7

16

3.04

9

0.66

16

0.397

5

2.2

19

1.3

11

17

4.88

4

13.6

9

23.5

9

15.7

15

2.49

9

0.52

16

0.316

5

1.6

20

1.06

11

18

3.32

6

9.4

9

17.8

8

9.3

23

1.66

10

0.26

13

0.216

5

1.5

20

0.66

13

19

5.8

6

22.2

9

40

8

14

22

3.6

10

0.37

19

0.41

5

1.7

19

1.62

12

20

7.6

6

30.4

9

61

8

29

19

5.1

10

0.86

10

0.59

5

2.8

19

1.9

12

21

1.89

6

5.1

9

9.5

9

<DL**

0.95

10

0.2

17

0.13

5

1.04

19

0.44

16

22

4.72

6

14.4

9

29.6

8

15

20

2.6

10

0.45

13

0.32

5

1.8

19

0.99

13

23

2.36

6

6.3

9

12.6

8

<DL

1.29

10

0.225

13

0.167

5

0.57

24

0.52

14

24

3.52

6

9.4

9

20

8

<DL

1.76

10

0.29

13

0.215

5

1.03

20

0.67

14

  1. * Uncertainty, ** DL—detection limit.

Table S2 .  Signs of structural organization of flowering plants in the ecotopes of Donbass

 

IETp

%

IMHp

%

ТNm

%

GТm

%

PDI

%

ТТp

%

ТТvp

%

TTgp

%

1

16

3

56.1

5

15

2

3.2

3

17

2

28

7

9.7

7

18

7

2

13.4

3

33

3

3.6

6

39.5

4

4.1

2

52.2

8

11

8

41.2

2

3

9.1

3

28.4

3

20.1

6

2

3

5.1

1

20.6

8

4.8

5

15.3

7

4

12.3

3

25.9

3

9

2

39

4

27.7

1

39.4

8

9

7

30

7

5

13.2

1

29.7

3

16

2

4.5

4

8.6

2

19

7

9.7

7

9.1

5

6

12.6

1

29.3

5

9.5

5

4

4

2.3

1

15.9

7

7.3

7

8.9

7

7

10.3

3

27.2

5

25.3

5

7.8

4

4

1

4.1

8

1.4

5

2.9

3

8

11.1

3

29.8

5

26

5

3

3

15.6

1

10.3

7

4

8

6

7

9

9.6

2

20.6

3

14.4

5

2.4

3

12.5

1

19

8

5

5

14

3

10

7.8

2

19.5

3

7

5

33.7

4

19.1

2

38

8

9.8

8

28

5

11

12

2

49.3

4

6.2

5

38.9

4

15.9

2

25.5

7

10.3

7

15

3

12

15.7

2

45.2

4

16.3

6

11.3

4

11.5

2

30

8

9.1

7

21

7

13

15.9

1

34.1

3

13.9

6

6.7

4

18

2

16.2

8

8.2

7

8

5

14

11.4

3

29.8

3

10

2

30

4

21.2

2

14

8

10

8

3.9

3

15

9.2

3

25.2

3

20.4

6

6.3

3

9

2

10.4

8

5

8

5.3

2

16

13.3

2

32.9

5

15

5

6.9

3

16.7

2

15

7

7.3

7

8

2

17

9.5

2

24.3

3

12

2

20.8

4

19

1

10.2

7

4.6

8

5

2

18

6

2

18.5

3

11.2

5

7.1

3

9.3

2

9.1

7

4.2

8

5.1

7

19

11.8

2

41

3

17.7

5

13

3

15.8

2

18.7

8

8.4

7

10.4

3

20

15.5

3

63

3

7.5

2

7

3

13.8

2

17

8

9.8

7

7.1

5

21

4.7

3

10.6

5

17.8

6

12.4

4

5.4

2

9.3

7

4

7

4.8

5

22

9.9

1

30.4

4

12

2

15.2

4

9.4

2

18.8

7

8.6

8

10.4

7

23

5.1

2

13.7

3

15

2

30

3

16.9

2

9.4

7

3.5

8

5.5

7

24

7

2

4.4

3

25.1

2

19.6

4

10.2

2

7.3

8

5.1

5

2.2

2

  1. IETp—index of embryonic teratogenesis; IMHp—index of morphological heterogeneity; TNm—total number of mosses; GTm—general teratogenesis of mosses; PDI—pollen deformation index; OTp—overall teratogenicity; OTvp—overall teratogenicity of the vegetative sphere; OTgp—teratogenicity of the generative sphere.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zinicovscaia, I., Safonov, A., Kravtsova, A. et al. Neutron Activation Analysis of Rare Earth Elements (Sc, La, Ce, Nd, Sm, Eu, Tb, Dy, Yb) in the Diagnosis of Ecosystems of Donbass. Phys. Part. Nuclei Lett. 21, 186–200 (2024). https://doi.org/10.1134/S1547477124020158

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477124020158

Keywords:

Navigation