Skip to main content
Log in

Research and Development of the Polarized Deuteron Source for the Electrostatic Accelerator

  • METHODS OF PHYSICAL EXPERIMENT
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

The prototype of polarized deuteron source was made for the Van de Graaff accelerator of the Czech Technical University in Prague with aim to create full scale setup for producing polarized neutron beam for experiments on measurement \(\Delta {{\sigma }_{{\text{L}}}}\) and \(\Delta {{\sigma }_{{\text{T}}}}\), longitudinal and transversal spin asymmetries in transmission polarized neutron beam through frozen polarized deuteron target. It is based on Kaminsky’s experiment on channeling deuterons through a magnetized Ni single crystal foil of 1–2 μm. It is proposed to use the reaction T\({{(d,n)}^{4}}\)He with polarized deuterons of an energy 150–200 keV. For a nonchanneled beam (the goniometer in a random position), the tensor polarization measurements were carried out with a TiT target. Our result is \({{P}_{{zz}}} = - 0.10 \pm 0.02\). This result indicates that deuterium atoms that have passed outside the channels also become polarized due to the capture of polarized electrons from the nickel crystal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. S. A. Coon, M. D. Scadron, P. C. McNamee, B. R. Barrett, D. W. E. Blatt, and B. H. J. McKellar, “Two-pion-exchange three-nuclear potential and nuclear matter,” Nucl. Phys. A 317, 242–278 (1979).

    Article  ADS  Google Scholar 

  2. H. Primakoff and T. Holstein, “Many-body interactions in atomic and nuclear systems,” Phys. Rev. 55, 1218 (1939).

    Article  ADS  MATH  Google Scholar 

  3. J. Fujita and H. Miyazawa, “Pion theory of three-body forces,” Prog. Theor. Phys. 17, 360–365 (1957).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. B. S. Pudliner, V. R. Pandharipande, J. Carlson, and R. B. Wiringa, “Quantum Monte Carlo calculations of A ≤ 7 nuclei,” Phys. Rev. Lett. 74, 4396–4399 (1995).

    Article  ADS  Google Scholar 

  5. Yu. N. Uzikov, “Three-Nucleon Forces and Some Aspects of Nuclear Astrophysics,” in The Universe Evolution, Ed. by I. Strakovsky and L. Blokhintsev (Nova Science Publisher, New York, 2013), pp. 269–292.

    Google Scholar 

  6. D. Huber and J. L. Friar, “The Ay puzzle and nuclear force,” Phys. Rev. C 58, 674—685 (1998).

    Article  ADS  Google Scholar 

  7. H. Witala, W. Glöckle, J. Golak, D. Huber, H. Kamada, and A. Nogga, “Scaling properties of the longitudinal and transversal asymmetries of the \(\vec {n}\vec {d}\) total cross section,” Phys. Lett. B 447, 216–220 (1999).

    Article  ADS  Google Scholar 

  8. R. D. Foster, C. R. Gould, D. G. Haase, J. M. Kelley, D. M. Markoff, and W. Tornow, “Measurement of the relative longitudinal spin-dependent total cross-section difference in \(\vec {n} - \vec {d}\) scattering,” Phys. Rev. C 73, 034002 (2006).

    Article  ADS  Google Scholar 

  9. I. Wilhelm, P. Murali, and Z. Doležal, “Production of monoenergetic neutrons from the T(d, n)α reaction with the associated particle method,” Nucl. Instrum. Methods Phys. Res., Sect. A 317, 553–558 (1992).

    Google Scholar 

  10. N. S. Borisov, V. N. Matafonov, A. B. Neganov, Yu. A. Plis, O. N. Shchevelev, Yu. A. Usov, I. Jánský, M. Rotter, B. Sedlák, I. Wilhelm, G. M. Gurevich, A. A. Lukhanin, J. Jelínek, A. Srnka, and L. Skrbek, “Target with a frozen nuclear polarization for experiments at low energies,” Nucl. Instrum. Methods Phys. Res., Sect. A 345, 421–428 (1994).

    Google Scholar 

  11. J. Brož, J. Černý, Z. Doležal, G. M. Gurevich, M. Jirásek, P. Kubík, A. A. Lukhanin, J. Švejda, I. Wilhelm, N. S. Borisov, Yu. M. Kazarinov, B. A. Khachaturov, E. S. Kuzmin, V. N. Matafonov, A. B. Neganov, I. L. Pisarev, Yu. A. Plis, Yu. A. Usov, M. Rotter, and B. Sedlák, “Measurement of spin-dependent total cross section difference in neutron-proton scattering ΔσT at 16 MeV,” Z. Phys. A 354, 401–408 (1996).

    Article  ADS  Google Scholar 

  12. J. Brož, J. Černý, Z. Doležal, G. M. Gurevich, P. Kubík, A. A. Lukhanin, G. A. Lukhanin, J. Švejda, I. Wilhelm, N. S. Borisov, E. S. Kuzmin, V. N. Matafonov, A. B. Neganov, I. L. Pisarev, Yu. A. Plis, and Yu. A. Usov, “Measurement of spin-dependent total cross section difference in neutron-proton scattering ΔσL at 16 MeV,” Z. Phys. A 359, 23–25 (1997).

    Article  ADS  Google Scholar 

  13. N. S. Borisov, N. A. Bazhanov, A. A. Belyaev, J. Brož, J. Černý, Z. Doležal, A. N. Fedorov, G. M. Gurevich, M. P. Ivanov, P. Kodyš, P. Kubík, E. S. Kuzmin, A. B. Lazarev, F. Lehar, O. O. Lukhanin, V. N. Matafonov, A. B. Neganov, I. L. Pisarev, J. Svejda, S. N. Shilov, Yu. A. Usov, and I. Wilhelm, “Deuteron frozen-spin-polarized target for nd experiments at the VdG Accelerator of Charles University,” Nucl. Instrum. Methods Phys. Res., Sect. A 593, 177–182 (2008).

    Google Scholar 

  14. Yu. A. Usov, “Frozen spin target developed at Dubna. History and traditions,” in Proceedings of the 16 th International Workshop in Polarized Sources, Targets and Polarimetry PSTP2015, Ruhr-University Bochum, Germany, 2015, PoS 243 (2016).

  15. S. T. Goertz, J. Harmsen, and J. Heckmann, Ch. Heß, W. Meyer, E. Radtke, and G. Reicherz, “Highest polarizations in deuterated compounds,” Nucl. Instrum. Methods Phys. Res., Sect. A 526, 43–52 (2004).

    Google Scholar 

  16. M. Kaminsky, “Polarization of channeled particles,” Phys. Rev. Lett. 23, 819–822 (1969); in Proceedings of 3rd International Symposium on Polarization Phenomena in Nuclear Reactions, Madison, 1970, pp. 803–809.

  17. M. Kaminsky, US Patent No. 3,569, 705 (March 9, 1971).

  18. E. K. Zavoiskii, “Concerning a possible method for the polarization of a proton beam,” Sov. Phys. JETP 5, 338—339 (1957).

    Google Scholar 

  19. D. S. Gemmel, “Channeling,” Rev. Mod. Phys. 46, 129 (1974).

    ADS  Google Scholar 

  20. D. S. Gemmel and J. N. Worthington, “An apparatus for “channeling” experiments,” Nucl. Instrum. Methods Phys. Res. 91, 15–28 (1971).

    Article  ADS  Google Scholar 

  21. L. C. Feldman, D. W. Mingay, and J. P. F. Sellschop, “Another measurement of the polarization of deuterons channeled through thin Ni foils,” Radiat. Eff. 13, 145–151 (1972).

    Article  ADS  Google Scholar 

  22. M. E. Ebel, “Polarization of channeled deuterons,” Phys. Rev. Lett. 24, 1395–1398 (1970).

    Article  ADS  Google Scholar 

  23. W. Brandt and R. Sizmann, “Capture of polarized electrons by deuterons emerging from a magnetized nickel foil,” Phys. Lett. A 37, 115–116 (1971).

    Article  ADS  Google Scholar 

  24. S. Kreussler and R. Sizmann, “Neutralization of 50–230-keV hydrogen ions which have penetrated Al, Au, C, and Cs films,” Phys. Rev. B 26, 520–529 (1982).

    Article  ADS  Google Scholar 

  25. W. Gleich, G. Regenfus, and R. Sizmann, “Spin polarization of field-emitter electrons from monocrystalline nickel,” Phys. Rev. Lett. 27, 1066–1069 (1971).

    Article  ADS  Google Scholar 

  26. C. Rau and R. Sizmann, “Measurement of predominant electron spin orientation at single crystal surfaces of ferromagnetic nickel,” Phys Lett. A 43, 317–318 (1973).

    Article  ADS  Google Scholar 

  27. C. Rau, “Electron spin polarization ESP at surfaces of ferromagnetic metals,” J. Magn. Magn. Mater. 30, 141–174 (1982).

    Article  ADS  Google Scholar 

  28. K.-H. Speidel, M. Knopp, W. Karle, P. Maier-Komor, H.-J. Simonis, F. Hagelberg, J. Gerber, and P. N. Tandom, “Evidence for spin-polarized electrons of highly stripped fluorine ions emerging from thin ferromagnetic layers,” Phys. Rev. Lett. 61, 2616–2619 (1988).

    Article  ADS  Google Scholar 

  29. L. N. Libermann, D. R. Fredkin, and H. B. Shore, “Two-dimensional “ferromagnetism” in iron,” Phys. Rev. Lett. 22, 539–541 (1969).

    Article  ADS  Google Scholar 

  30. L. Liebermann, J. Clinton, D. M. Edwards, and J. Mathon, ““Dead” layers in ferromagnetic transition metals,” Phys. Rev. Lett. 25, 232–235 (1970).

    Article  ADS  Google Scholar 

  31. P. G. Sona, “A new method proposed to increase polarization in polarized ion sources of H- and D-,” Energia Nucleare 14, 295–299 (1967).

    Google Scholar 

  32. Yu. A. Plis, J. Černý, A. N. Fedorov, I. V. Gapienko, G. M. Gurevich, Z. Kohout, J. Petrík, S. Pospíšil, M. Solar, J. Šveida, Yu. A. Usov, and I. Wilhelm, “Research and development of the polarized deuteron source for the Van De Graaff accelerator,” Part. Nucl. Lett. 16, 256—263 (2019), Preprint JINR E13-2018-69 (JINR, Dubna).

  33. D. von Ehrenstein, US Patent, No. 3,723,741 (March 27, 1973).

  34. G. G. Ohlsen, “Polarization transfer and spin correlation experiments in nuclear physics,” Rep. Prog. Phys. 35, 717—801 (1972).

    Article  ADS  Google Scholar 

  35. E. M. Gunnersen and G. James, “On the efficiency of the reaction 3H(d, n)4He in titanium tritide bombarded with deuterons,” Nucl. Instrum. Methods Phys. Res. 8, 173–184 (1960).

    Article  ADS  Google Scholar 

  36. A. Galonsky, H. B. Willard, and T. A. Welton, “S-wave detector of deuteron polarization and 14-MeV polarized-neutron source,” Phys. Rev. Lett. 2, 349–351 (1959).

    Article  ADS  Google Scholar 

  37. W. Haeberli, “Polarized Beams,” in Nuclear Spectroscopy and Reactions. Ed. by J. Cerny (Academic Press, New York, 1974), p. 152.

    Google Scholar 

  38. A. A. Naqvi and G. Clausnitzer, “Measurement of beam polarization using the reaction,” Nucl. Instrum. Methods Phys. Res., Sect. A 324, 429–432.

  39. G. G. Ohlsen and P. W. Keaton, “Techniques for measurement of spin-1/2 and spin-1 polarization analyzing tensors,” Nucl. Instrum. Methods Phys. Res. 109, 41–59 (1973).

    Article  ADS  Google Scholar 

  40. B. P. Ad’yasevich, V. G. Antonenko, and V. N. Bragin, “Research of the reactions 2H(d, p)3H and 2H(d, p)3He with a polarized deuteron beam. extrapolation of the cross sections into the low energy region,” Sov. J. Nucl. Phys. 33, 313 (1981).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank Ivan Štekl for useful discussion.

J. Černý, Z. Kohout, J. Petrík, S. Pospíšil, M. Solar, R. Sykora, J. Šveida, and I. Wilhelm from Czech Technical University in Prague, Institute for Experimental and Applied Physics participated in the research.

Funding

The work was supported from European Regional Development Fund-Project “Van de Graaff Accelerator – a Tunable Source of Monoenergetic Neutrons and Light Ions” (no. CZ.02.1.01/0.0/0.0/16-013/0001785).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Gapienko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gapienko, I.V., Belov, D.V., Fedorov, A.N. et al. Research and Development of the Polarized Deuteron Source for the Electrostatic Accelerator. Phys. Part. Nuclei Lett. 20, 1409–1418 (2023). https://doi.org/10.1134/S1547477123060146

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477123060146

Navigation