Skip to main content
Log in

Tunka-Grande Scintillation Plant: Status, Results, and Plans

  • METHODS OF PHYSICAL EXPERIMENT
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

The Tunka-Grande scintillation facility is part of the TAIGA (Tunka Advanced Instrument for cosmic rays and Gamma Astronomy) astrophysical complex located in the Tunka Valley (Republic of Buryatia, Russia) 50 km from Lake Baikal. The purpose of the experiment is to study the energy spectrum and mass composition of primary cosmic rays (PCRs), as well as search for diffuse gamma radiation in the energy range of \({{10}^{{16}}}-{{10}^{{18}}}\) eV. This paper presents a description of the installation and the main scientific results obtained during the first 5 years of its operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

Notes

  1. For a list of TAIGA collaboration participants, see [1].

REFERENCES

  1. E. A. Bonvech, A. V. Bulan, P. A. Volchugov, N. N. Kalmykov, E. E. Korosteleva, V. A. Kozhin, A. P. Kryukov, L. A. Kuz’michev, N. B. Lubsandorzhiev, R. Mirzoyan, E. A. Okuneva, E. A. Osipova, A. D. Panov, D. A. Podgrudkov, E. G. Popova, E. B. Postnikov, V. V. Prosin, A. Yu. Razumov, A. A. Silaev, A. A. Silaev, Jr., A. V. Skurikhin, L. G. Sveshnikova, D. V. Chernov, P. A. Bez”yazykov, N. M. Budnev, A. R. Gafarov, E. O. Gres’, O. A. Gres’, T. I. Gres’, O. G. Grishin, A. N. Dyachok, D. P. Zhurov, A. V. Zagorodnikov, A. D. Ivanova, M. A. Ilyushin, S. N. Kiryukhin, N. I. Kolosov, Yu. E. Lemeshev, S. D. Malakhov, R. R. Mirgazov, A. L. Pakhorukov, L. V. Pan’kov, A. A. Pushnin, E. V. Ryabov, V. S. Samoliga, A. B. Tanaev, B. A. Tarashchanskii, M. Yu. Ternovoi, V. A. Tabolenko, A. L. Ivanova; A. N. Borodin, A. A. Grinyuk, M. V. Lavrova, A. Pan, I. Satyshev, V. M. Grebenyuk, L. G. Tkachev, I. I. Astapov, V. V. Kindin, R. P. Kokoulin, K. G. Kompaniets, A. A. Petrukhin, I. I. Yashin, A. Vaidyanatan, A. Yu. Garmash, E. A. Kravchenko, A. V. Sokolov, D. M. Voronin, B. K. Lubsandorzhiev, G. I. Rubtsov, A. Yu. Sidorenkov, N. A. Ushakov, V. S. Ptuskin, N. V. Volkov, A. A. Lagutin, R. I. Raikin, and A. Chiavassa.

  2. L. Kuzmichev et al., “Experimental Complex TAIGA,” Phys. At. Nucl. 83, 1375–1382 (2020).

    Article  Google Scholar 

  3. S. F. Berezhnev et al., “The Tunka-133 EAS Cherenkov light array: status of 2011,” Nucl. Instrum. Methods Phys. Res., Sect. A 692, 98–105 (2012).

    Google Scholar 

  4. I. I. Astapov et al., “The TAIGA-HiSCORE array prototype: status and first results,” Bull. Russ. Acad. Sci. 81, 460–463 (2017).

    Article  Google Scholar 

  5. R. D. Monkhoev et al., “The Tunka-Grande experiment,” J. Instrum. 12, C06019 (2017).

    Article  Google Scholar 

  6. A. Ivanova et al., “Design features and data acquisition system of the TAIGA-Muon Scintillation Array,” J. Instrum. 15, C06057 (2020).

    Article  Google Scholar 

  7. L. Kuzmichev et al., “Cherenkov EAS arrays in the Tunka astrophysical center: From Tunka-133 to the TAIGA gamma and cosmic ray hybrid detector,” Nucl. Instrum. Methods Phys. Res., Sect. A 952, 161830 (2020).

    Google Scholar 

  8. P. Blasi, “Origin of very high- and ultra-high-energy cosmic rays,” C. R. Phys. 15, 329–338 (2014).

    Article  ADS  Google Scholar 

  9. L. O. Drury, “Origin of cosmic rays,” Astropart. Phys. 39–40, 52–60 (2012).

  10. V. S. Ptuskin, “The origin of cosmic rays,” Phys. Usp. 53, 958–961 (2010).

    Article  ADS  Google Scholar 

  11. V. L. Ginzburg and V. A. Dogel, “Some aspects of gamma-ray astronomy,” Sov. Phys. Usp. 32, 385–415 (1989).

    Article  ADS  Google Scholar 

  12. V. S. Berezinsky, T. K. Gaisser, F. Halzen, and T. Stanev, “Diffuse radiation from cosmic ray interactions in the galaxy,” Astropart. Phys. 1, 281—288 (1993).

    Article  ADS  Google Scholar 

  13. F. Halzen, R. J. Protheroe, T. Stanev, and C. P. Vankov, “Cosmology with 100-TeV gamma-ray telescopes,” Phys. Rev. D 41, 342 (1990).

    Article  ADS  Google Scholar 

  14. M. Fairbairn, T. Rashba, and S. V. Troitsky, “Photon-axion mixing and ultra-high-energy cosmic rays from BL Lac type objects–shining light through the Universe,” Phys. Rev. D 84, 125019 (2011).

    Article  ADS  Google Scholar 

  15. O. K. Kalashev and M. Y. Kuznetsov, “Constraining heavy decaying dark matter with the high energy gamma-ray limits,” Phys. Rev. D 94, 063535 (2016).

    Article  ADS  Google Scholar 

  16. C. Bérat, C. Bleve, O. Deligny, F. Montanet, P. Savina, and Z. Torrès, “Diffuse flux of ultra-high-energy photons from cosmic-ray interactions in the disk of the Galaxy and implications for the search for decaying super-heavy dark matter,” Astrophys. J. 929, 55 (2022).

    Article  ADS  Google Scholar 

  17. M. Galaverni and G. Sigl, “Lorentz violation in the photon sector and ultra-high energy cosmic rays,” Phys. Rev. Lett. 100, 021102 (2008).

    Article  ADS  Google Scholar 

  18. V. L. Ginzburg, “Astrophysical aspects of cosmic-ray research (First 75 years and outlook for the future),” Sov. Phys. Usp. 31, 491–510 (1988).

    Article  ADS  Google Scholar 

  19. A. M. Hillas, “Evolution of ground-based gamma-ray astronomy from the early days to the Cherenkov telescope arrays,” Astropart. Phys. 43, 19–43 (2013).

    Article  ADS  Google Scholar 

  20. A. M. Bykov et al., “Cherenkov gamma-ray telescopes: past, present, future. The ALEGRO project,” Tech. Phys. 62, 819–836 (2017).

    Article  Google Scholar 

  21. Z. Cao et al., “Ultrahigh-energy photons up to 1.4 Petaelectronvolts from 12 γ-ray galactic sources,” Nature 594, 33–36 (2021).

    Article  ADS  Google Scholar 

  22. Z. Cao et al., “Peta-electron volt gamma-ray emission from the Crab Nebula,” Science 373, 425–430 (2021).

    Article  ADS  Google Scholar 

  23. M. Amenomori et al., “First detection of sub-PeV diffuse gamma rays from the galactic disk: evidence for ubiquitous galactic cosmic rays beyond PeV energies,” Phys. Rev. Lett. 126, 141101 (2021).

    Article  ADS  Google Scholar 

  24. N. M. Budnev et al., “The primary cosmic-ray energy spectrum measured with the Tunka-133 array,” Astropart. Phys 117, 102406 (2020).

    Article  Google Scholar 

  25. V. V. Prosin et al., “Energy spectrum of primary cosmic rays according to the data of the TAIGA Astrophysical Complex,” Bull. Russ. Acad. Sci. Phys. 87, 1043–1045 (2023).

  26. V. B. Atrashkevich, N. N. Kalmykov, and G. B. Khristiansen, “Method for studying the chemical composition of the primary cosmic radiation at and above 1017 eV,” JETP Lett. 33, 225–227 (1981).

    ADS  Google Scholar 

  27. M. B. Amelchakov et al., “The NEVOD-EAS air-shower array,” Nucl. Instrum. Methods Phys. Res., Sect. A 1026, 166184 (2022).

    Google Scholar 

  28. W. D. Apel et al., “The KASCADE-Grande experiment,” Nucl. Instrum. Methods Phys. Res., Sect. A 620, 202–216 (2010).

    Google Scholar 

  29. M. Agliettaet al., “UHE cosmic ray event reconstruction by the electromagnetic detector of EAS-TOP,” Nucl. Instrum. Methods Phys. Res., Sect. A 336, 310–321 (1993).

    Google Scholar 

  30. A. Castellina, “Cosmic rays and high energy physics: The EAS-TOP data,” Nucl. Phys. B Proc. Suppl. 122, 243–246 (2003).

    Article  ADS  Google Scholar 

  31. O. I. Likiy et al., “Investigating the characteristics of scintillation detectors for the NEVOD-EAS experiment,” Instrum. Exp. Tech. 59, 781–788 (2016).

    Article  Google Scholar 

  32. L. Landau, “On the energy loss of fast particles by ionization,” J. Phys. (USSR) 8, 201–205 (1944).

    Google Scholar 

  33. J. E. Moyal, “Theory of ionization fluctuations,” Phil. Mag. Ser. 46, 263–280 (1955).

    Article  MATH  Google Scholar 

  34. B. K. Lubsandorzhiev, R. V. Poleshuk, B. A. J. Shaibonov, Yu. E. Vyatchin, and A. V. Zablotsky, “A LED flasher for TUNKA experiment,” in Proceedings of the 30th International Cosmic Ray Conference, 2007, Vol. 5, pp. 1117–1120.

  35. S. N. Vernov et al., “New installation of Moscow State University for studying extensive air showers with energies to 1018 eV,” Bull. Russ. Acad. Sci. Phys. 44, 80–85 (1980).

    Google Scholar 

  36. Yu. A. Fomin, N. N. Kalmykov, I. S. Karpikov, G. V. Kulikov, M. Y. Kuznetsov, G. I. Rubtsov, V. P. Sulakov, and S. V. Troitsky, “Full Monte-Carlo description of the Moscow State University extensive air shower experiment,” J. Instrum. 11, T08005 (2016).

    Article  Google Scholar 

  37. K. Kamata and J. Nishimura, “The lateral and the angular structure functions of electron showers,” Prog. Theor. Phys. Suppl. 6, 93–155 (1958).

    Article  ADS  MATH  Google Scholar 

  38. K. Greisen, “Cosmic ray showers,” Annu. Rev. Nucl. Sci. 10, 63–108 (1960).

    Article  ADS  Google Scholar 

  39. P. Grieder, Extensive Air Showers. High Energy Phenomena and Astrophysical Aspects. A Tutorial, Reference Manual and Data Book, Vol. 1, p. 1118.

  40. N. M. Budnev, A. L. Ivanova, N. N. Kalmykov, L. A. Kuzmichev, V. P. Sulakov, and Yu. A. Fomin, “Simulation of the Tunka-133 scintillation experiment,” Moscow Univ. Phys. Bull. 69, 357—362 (2014).

    Article  ADS  Google Scholar 

  41. L. Rayleigh, “XII. On the resultant of a large number of vibrations of the same pitch and of arbitrary phase,” Philos. Mag. Ser. 10, 73–78 (1880).

    Article  Google Scholar 

  42. M. G. Aartsen et al., “Cosmic ray spectrum and composition from PeV to EeV using 3 years of data from IceTop and IceCube,” Phys. Rev. D 100, 082002 (2019).

    Article  ADS  Google Scholar 

  43. N. Budnev et al., “Tunka-25 air shower Cherenkov array: The main results,” Astropart. Phys. 50–52, 18–25 (2013).

  44. W. D. Apelet al., “The spectrum of high-energy cosmic rays measured with KASCADE-Grande,” Astropart. Phys. 36, 183–194 (2012).

    Article  ADS  Google Scholar 

  45. R. U. Abbasi et al., “The cosmic-ray energy spectrum between 2 PeV and 2 EeV observed with the TALE detector in monocular mode,” Astrophys. J. 865, 74 (2018).

    Article  ADS  Google Scholar 

  46. W. D. Apel et al., “A comparison of the cosmic-ray energy scales of Tunka-133 and KASCADE-Grande via their radio extensions Tunka-Rex and LOPES,” Phys. Lett. B 763, 179–185 (2016).

    Article  ADS  Google Scholar 

  47. R. Engel, D. Heck, T. Huege, T. Pierog, M. Reininghaus, F. Riehn, R. Ulrich, M. Unger, and D. Veberič, “Towards a next generation of CORSIKA: A framework for the simulation of particle cascades in astroparticle physics,” Comput. Software Big Sci. 3, 2 (2019).

    Article  Google Scholar 

  48. S. Agostinelli et al., “GEANT4–a simulation toolkit,” Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250–303 (2003).

    Google Scholar 

  49. J. Allison et al., “Recent developments in Geant4,” Nucl. Instrum. Methods Phys. Res., Sect. A 835, 186–225 (2016).

    Google Scholar 

  50. D. Heck, “Low energy hadronic interaction models,” Nucl. Phys. B Proc. Suppl. 151, 127–134 (2006).

    Article  ADS  Google Scholar 

  51. S. Ostapchenko, “QGSJET-II: physics, recent improvements, and results for air showers,” EPJ Web Conf. 52, 02001 (2013).

  52. W. R. Nelson, H. Hirayama, and D. W. O. Rogers, “The Egs4 Code System” (1985).

  53. R. Monkhoev et al., “Geant4 simulation of the Tunka-Grande experiment,” J. Phys. Conf. Ser. 2103, 012001 (2021).

    Article  Google Scholar 

  54. M. C. Chantell et al., “Limits on the isotropic diffuse flux of ultrahigh-energy gamma radiation,” Phys. Rev. Lett. 79, 1805–1808 (1997).

    Article  ADS  Google Scholar 

  55. W. D. Apel et al., “KASCADE-Grande limits on the isotropic diffuse gamma-ray flux between 100 TeV and 1 EeV,” Astrophys. J. 848, 1 (2017).

    Article  ADS  Google Scholar 

  56. G. J. Feldman and R. D. Cousins, “A unified approach to the classical statistical analysis of small signals,” Phys. Rev. D 57, 3873–3889 (1998).

    Article  ADS  Google Scholar 

  57. Yu. A. Fomin, N. N. Kalmykov, I. S. Karpikov, G. V. Kulikov, M. Y. Kuznetsov, G. I. Rubtsov, V. P. Sulakov, and S. V. Troitsky, “Constraints on the flux of ~(1016—1017.5) eV cosmic photons from the EAS-MSU muon data,” Phys. Rev. D 95, 123011 (2017).

    Article  ADS  Google Scholar 

  58. P. Abreu et al., “A search for ultra-high-energy photons at the Pierre Auger observatory exploiting air-shower universality,” PoSI CRC2021, 373 (2021).

    Google Scholar 

  59. R. U. Abbasi et al., “Constraints on the diffuse photon flux with energies above 1018 eV using the surface detector of the telescope array experiment,” Astropart. Phys 110, 8–14 (2019).

    Article  ADS  Google Scholar 

  60. I. I. Astapov et al., “Cosmic-ray research at the TAIGA astrophysical facility: results and plans,” JETP 134, 469–478 (2022).

    Article  ADS  Google Scholar 

  61. N. M. Budnev et al., “The TAIGA experiment: from cosmic ray physics to gamma astronomy in the Tunka valley,” Phys. Part. Nucl. 49, 589–598 (2018).

    Article  Google Scholar 

  62. I. Astapov et al., “Identification of electromagnetic and hadronic EASs using neural network for TAIGA scintillation detector array,” J. Instrum. 17, 05023 (2022).

    Google Scholar 

  63. V. Prosin et al., “Primary cosmic rays energy spectrum and mean mass composition by the data of the TAIGA astrophysical complex,” in Proceedings of the 21st International Symposium on Very High Energy Cosmic Ray Interactions, 2022. arXiv:2208.01689.

  64. A. Yushkov, “Mass composition of cosmic rays with energies above 1017.2 eV from the hybrid data of the Pierre Auger Observatory,” PoSI CRC2019, 482 (2020).

    Google Scholar 

  65. R. U. Abbasi et al., “The cosmic-ray composition between 2 PeV and 2 EeV observed with the TALE detector in monocular mode,” Astrophys. J. 909, 178 (2021).

    Article  ADS  Google Scholar 

Download references

FUNDING

This work was carried out at the Astrophysical Complex of Moscow State University-ISU, agreement EB 075-15-2021-675, with support from the Russian Science Foundation, 23-72-00016 (sections 5 and 6) and 23-72-00019 (section 7); the Ministry of Science and Higher Education of the Russian Federation, agreement EB-075-15-2021-675; and State Tasks FZZE-2020-0017, FZZE-2023-00004, FSUS-2020-0039, and FSUS-2022-0015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. D. Monkhoev.

Ethics declarations

The author declares that he has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monkhoev, R.D. Tunka-Grande Scintillation Plant: Status, Results, and Plans. Phys. Part. Nuclei Lett. 20, 1002–1015 (2023). https://doi.org/10.1134/S1547477123050552

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477123050552

Navigation