Skip to main content
Log in

Measurement of the LYSO:Ce and LYSO:Ce,Ca Scintillator Response for the Electromagnetic Calorimeter of the COMET Experiment

  • METHODS OF PHYSICAL EXPERIMENT
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

Scintillation properties of LYSO:Ce and LYSO:Ce,Сa crystals, such as energy resolution, response time, and distribution of light yield along the crystal length, have been studied for the electromagnetic calorimeter of the COMET experiment searching for the process of neutrinoless muon-electron conversion in the aluminum nuclei. The non-uniformity of the responses along the scintillator length are calculated and comparison with the scintillation properties of LYSO:Ce and LYSO:Ce,Ca crystals from Saint-Gobain (France) is performed. The obtained mean of the non-uniformity of the scintillator response is ~4.6 and ~ 1.1%, variation of the values of energy resolution at the middle of the length are ±0.21 and ±0.19% for LYSO:Ce and LYSO:Ce,Сa crystals, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Y. Kuno and Y. Okada, “Muon decay and physics beyond the Standard Model,” Rev. Mod. Phys. 73, 151–202 (2001).

    Article  ADS  Google Scholar 

  2. COMET Collab., “An experimental proposal on nuclear and particle physics experiments at the J-PARC 50 GeV proton synchrotron: an experimental search for lepton flavor violating μ–e conversion at a sensitivity of 10–16 with a slow-extracted bunched proton beam,”(2007) http://comet.kek.jp/Documents_files/Phase-I-Proposal-v1.2.pdf.

  3. R. Abramishvili, et al. (COMET Collaboration), “COMET phase-I technical design report,” Prog. Theor. Exp. Phys. 2020, C01 (2020).

    Article  Google Scholar 

  4. V. Kalinnikov et al., “Spatial and temporal evolution of scintillation light in LYSO electromagnetic calorimeter for non-paraxial electromagnetic showers,” Nonlin. Phen. Complex 19, 345–357 (2016).

    Google Scholar 

  5. www.crystals.saint-gobain.com/radiation-detection-scintillators/crystal-scintillators/lyso-scintillation-crystals/.

  6. C. W. E. van Eijk, “Inorganic scintillators in medical imaging detectors,” Nucl. Instrum. Methods Phys. Res., Sect. A 509, 17–25 (2003).

    Google Scholar 

  7. M. Cordelli et al., “Test of a LYSO matrix with an electron beam between 100 and 500 MeV for KLOE-2,” Nucl. Instrum. Methods Phys. Res., Sect. A 617, 109–112 (2010).

    Google Scholar 

  8. M. Belov et al., “Influence of defects on scintillation properties of oxyorthosilicate crystals Ce:Sc:LFS,” Bull. Lebedev Phys. Inst. 44, 232–237 (2017).

    Article  ADS  Google Scholar 

  9. A. Wojtowicz, P. Szupryczynski, D. Wisniewski, J. Glodo, and W. Drozdowski, “Electron traps and scintillation mechanism in LuAlO3:Ce,” J. Physics: Condens. Matter 13, 275–291 (2001).

    Google Scholar 

  10. B. Liu et al., “First-principles study of oxygen vacancies in Lu2SiO5,” J. Phys.: Condens. Matter 19, 436215 (2007).

    ADS  Google Scholar 

  11. S. Blahuta et al., “Evidence and consequences of Ce4+ in LYSO:Ce,Ca and LYSO:Ce,Mg single crystals for medical imaging applications,” IEEE Trans. Nucl. Sci. 60, 3134–3141 (2013).

    Article  ADS  Google Scholar 

  12. S. Blahuta et al., “Engineering of LYSO single crystals for performance,” in Proceedings of IEEE Nuclear Science Symposium and Medical Imaging Conference. Strasbourg, France, 2016.

  13. Y. Xiaoguang, “A Study of light collection efficiency in scintillation detectors,” Nucl. Instrum. Methods Phys. Res. 228, 101–104 (1984).

    Article  ADS  Google Scholar 

  14. V. Kalinnikov and E. Velicheva, “Measurements of the electromagnetic calorimeter prototype parameters of COMET experiment using cosmic muons,” Phys. Part. Nucl. Lett. 19, 225—234 (2022).

    Article  Google Scholar 

  15. V. Kalinnikov and E. Velicheva, “Investigation of LYSO and GSO crystals and simulation of the calorimeter for COMET experiment,” Phys. Part. Nucl. Lett. 11, 259—268 (2014).

    Article  Google Scholar 

  16. www.hamamatsu.com/resources/pdf/etd/High_energy_ PMT_TPMZ0003E.pdf.

  17. www.caen.it/sections/digitizer-families/.

Download references

ACKNOWLEDGMENTS

We are grateful for the useful discussions and help in preparing the article to G. Pontecorvo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Velicheva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalinnikov, V., Velicheva, E. & Rozhdestvensky, A. Measurement of the LYSO:Ce and LYSO:Ce,Ca Scintillator Response for the Electromagnetic Calorimeter of the COMET Experiment. Phys. Part. Nuclei Lett. 20, 995–1001 (2023). https://doi.org/10.1134/S1547477123050412

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477123050412

Keywords:

Navigation