Skip to main content
Log in

Atomic and Electronic Structure of the Al2O3/Ti5Si3 Interface

  • PHYSICS OF SOLID STATE AND CONDENSED MATTER
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

The atomic and electronic structure of the Al2O3/Ti5Si3 interface has been calculated for the first time by the method of projected augmented waves within the electron density functional theory. The values of the adhesion energy are determined depending on the cleavage plane. It is shown that the work of separation obtained for the plane passing through the interplanar distance closest to the interface in titanium silicide is significantly less than that at the interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. W. E. Dowling, W. T. Donlon, and J. E. Allison, High-Temperature Ordered Intermetallic Alloys VI (MRS, Pittsburgh, 1995).

    Google Scholar 

  2. Z. Li and W. Gao, “High Temperature Corrosion of Intermetallics,” in Intermetallics Research Progress (Nova Science Publishers, New York, 2008).

    Google Scholar 

  3. J. Dai, J. Zhu, C. Chen, and F. Weng, “High temperature oxidation behavior and research status of modifications on improving high temperature oxidation resistance of titanium alloys and titanium aluminides: a review,” J. Alloys Compd. 685, 784 (2016). www.sciencedirect.com/science/article/pii/S0925838816319351.

    Article  Google Scholar 

  4. X. Y. Li, S. Taniguchi, Y. Matsunaga, K. Nakagawa, K. Fujita, “Influence of siliconizing on the oxidation behavior of a γ-TiAl based alloy,” Intermetallics 11, 143 (2003). www.sciencedirect.com/science/article/pii/ S0966979502001930.

    Article  Google Scholar 

  5. X. Weihao, Z. Liang, and J. Huiren, “Effects of Si on high temperature oxidation resistance of TiAl alloy,” J. Beijing Univ. Aeronaut. Astronaut. 32, 365 (2006).

    Google Scholar 

  6. H. R. Jiang, Z. L. Wang, W. S. Ma, X. R. Feng, Z. Q. Dong, L. Zhang, and Y. Liu, “Effects of Nb and Si on high temperature oxidation of TiAl,” Trans. Nonferrous Met. Soc. China 18, 512 (2008). www.sciencedirect.com/science/article/pii/S1003632608600904.

    Article  Google Scholar 

  7. R. Swadzba, L. Swadzba, B. Mendala, B. Witala, J. Tracz, and K. Marugi, “Characterization of Si–Aluminide Coating and Oxide Scale Microstructure Formed on γ-TiAl alloy during long-term oxidation at 950 °C,” Intermetallics 87, 81 (2017). www.sciencedirect.com/science/article/pii/S0966979516307725.

    Article  Google Scholar 

  8. J. Huang, F. Zhao, X. Cui, J. Wang, and T. Xiong, “Long-term oxidation behavior of silicon-aluminizing coating with an in-situ formed Ti5Si3 diffusion barrier on γ-TiAl alloy,” Appl. Surf. Sci. 582, 152444 (2022). www.sciencedirect.com/science/article/pii/S016943322 2000277.

    Article  Google Scholar 

  9. A. V. Bakulin, S. S. Kul’kov, and S.E. Kul’kova, “Adhesive properties of the TiAl/Al2O3 interface,” Izv. Vyssh. Uchebn. Zaved. Fiz. 63, 3 (2020). www.elibrary.ru/item.asp?id=42952362.

  10. A. V. Bakulin, S. S. Kul’kov, and S.E. Kul’kova, “Effect of metal and oxide intermediate layers on the adhesive properties of the Ti3Al/Al2O3 interface,” Izv. Vyssh. Uchebn. Zaved. Fiz. 64, 24 (2021). www.elibrary.ru/ item.asp?id=45698002.

  11. P. E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B 50, 17953 (1994). https://journals. aps.org/prb/abstract/10.1103/PhysRevB.50.17953.

    Article  ADS  Google Scholar 

  12. G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59, 1758 (1999). https://journals. aps.org/prb/abstract/10.1103/PhysRevB.59.1758.

    Article  ADS  Google Scholar 

  13. S. Hocker, A. Bakulin, H. Lipp, S. Schmauder, and S. Kulkova, “Atomistic Simulations of Metal–Al2O3 Interfaces,” in Handbook of Mechanics of Materials (Springer, Singapore, 2019). https://link.springer.com/ referenceworkentry/10.1007/978-981-10-6884-3_9.

    Google Scholar 

  14. L. S. Chumakova, A. V. Bakulin, and S.E. Kul’kova, “Electronic structure and mechanical properties of Ti5Si3” JETP 134, 73–753 (2022).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

Numerical calculations were carried out on the SKIF Cyberia supercomputer at Tomsk State University.

Funding

This work was supported by the Russian Science Foundation (project no. 22-23-00078).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. S. Chumakova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chumakova, L.S., Bakulin, A.V. & Kulkova, S.E. Atomic and Electronic Structure of the Al2O3/Ti5Si3 Interface. Phys. Part. Nuclei Lett. 20, 1135–1137 (2023). https://doi.org/10.1134/S1547477123050217

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477123050217

Navigation