Skip to main content
Log in

Maximum Yukawa Couplings for WIMP Majorana Dark Matter in Scotogenic Model

  • PHYSICS OF ELEMENTARY PARTICLES AND ATOMIC NUCLEI. THEORY
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

In the context of the Scotogenic model, we have investigated for the largest possible Yukawa couplings without inducing large charged lepton flavor violations (CLFVs). The electro-weak symmetry breaking (EWSB) mass scale inert, and the lightest Majorana fermion is identified as the dark matter field and generated neutrino mass radiatively along with the TeV scale inert scalars. A generalized parameterization has been proposed to obtain the maximum Yukawa couplings while satisfying neutrino mass and mixing, dark matter relic density (DM RD), the conversion rate of leptons in nuclei (CR), and CLFV bounds simultaneously. With the reduced number of phenomenology-relevant parameters to merely three, we also obtained the allowed parameter space with these large Yukawa couplings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

Notes

  1. This is the approximate neutrino mass matrix for very minute mass splitting between inert scalars \({{\phi }_{s}}\) and \({{\phi }_{p}}\), i.e., \(m_{{{{\phi }_{s}}}}^{2} - m_{{{{\phi }_{p}}}}^{2} \sim \widetilde \lambda {{{v}}^{2}} \ll M_{{{{N}_{i}}}}^{2}, m_{{{{\phi }_{s}}}}^{2} {\text{and }}m_{{{{\phi }_{p}}}}^{2}\).

REFERENCES

  1. E. Ma, Phys. Rev. D 73, 077301 (2006). arXiv:hep-ph/0601225. https://doi.org/10.1103/PhysRevD.73.077301

    Article  ADS  Google Scholar 

  2. A. Ahriche, A. Jueid, and S. Nasri, Phys. Rev. D 97, 095012 (2018). arXiv:1710.03824. https://doi.org/10.1103/PhysRevD.97.095012

  3. S. Weinberg, Phys. Rev. Lett. 43, 1566—1570 (1979). https://doi.org/10.1103/PhysRevLett.43.1566

    Article  ADS  Google Scholar 

  4. J. A. Casas, A. Ibarra, and F. Jimenez-Alburquerque, J. High Energy Phys. 04, 064 (2007). arXiv:hep-ph/0612289. https://doi.org/10.1088/1126-6708/2007/04/064

  5. J. A. Casas and A. Ibarra, Nucl. Phys. B 618, 171—204 (2001). arXiv:hep-ph/0103065.https://doi.org/10.1016/S0550-3213(01)00475-8

    Article  ADS  Google Scholar 

  6. Z. Maki, M. Nakagawa, and S. Sakata, Prog. Theor. Phys. 28, 870—880 (1962). https://doi.org/10.1143/PTP.28.870

    Article  ADS  Google Scholar 

  7. B. Pontecorvo, Sov. Phys. JETP 26, 984 (1968).

    ADS  Google Scholar 

  8. I. Esteban, M. C. Gonzalez-Garcia, M. Maltoni, I. Martinez-Soler, and T. Schwetz, J. High Energy Phys. 01, 087 (2017). arXiv:1611.01514.https://doi.org/10.1007/JHEP01(2017)087

  9. A. Vicente and C. E. Yaguna, J. High Energy Phys. 02, 144 (2015). https://doi.org/10.1007/JHEP02(2015)144

    Article  ADS  Google Scholar 

  10. A. Ibarra, C. E. Yaguna, and O. Zapata, Phys. Rev. D 93, 035012 (2016). arXiv:1601.01163. https://doi.org/10.1103/PhysRevD.93.035012

  11. T. Toma and A. Vicente, J. High Energy Phys. 01, 160 (2014). https://doi.org/10.1007/JHEP01(2014)160

    Article  ADS  Google Scholar 

  12. F. Staub, Adv. High Energy Phys. 2015, 840780 (2015). https://doi.org/10.1155/2015/840780

    Article  MathSciNet  Google Scholar 

  13. W. Porod and F. Staub, Comput. Phys. Commun. 183, 2458—2469 (2012). https://doi.org/10.1016/j.cpc.2012.05.021

    Article  ADS  Google Scholar 

  14. G. Belanger, F. Boudjema, A. Goudelis, A. Pukhov, and B. Zaldivar, Comput. Phys. Commun. 231, 173—186 (2018). https://doi.org/10.1016/j.cpc.2018.04.027

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avnish.

Ethics declarations

The author declares that he has no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avnish Maximum Yukawa Couplings for WIMP Majorana Dark Matter in Scotogenic Model. Phys. Part. Nuclei Lett. 20, 1146–1149 (2023). https://doi.org/10.1134/S1547477123050084

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477123050084

Navigation