Skip to main content
Log in

Study of Rotational Effect on Even-Even 254,256Rf Isotopes of α-Particle Radioactivity Using Various Semi-Empirical Formulae

  • PHYSICS OF ELEMENTARY PARTICLES AND ATOMIC NUCLEI. THEORY
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

The present work covers the theoretical investigation of the \(\alpha \)-decay half-lives of the even-even \(^{{254,256}}\)Rf chains using deformed relativistic Hartree–Bogoliubov theory in the continuum (DRHBc) formalism with the PC-PK1 parameter set. The effect of rotation on the stability of these neutron-deficient nuclei is appraised. Six different semi-empirical formulae, namely, the Viola–Seaborg semi-empirical formula, modified Brown formula, semiempirical formula based on fission theory, Royer formula, Wang formula, and Modified Yibin et al. formula are adopted for the estimation of the decay half-lives of the considered chain. The predictive accuracy of each of these formulae is evaluated by comparing them to the experimental data. The calculation reveals that the relative dependency of the employed formulae is hinged on their respective constituents. We observed that the binding energy obtained with the rotational effect improves the decay half-life for all semi-empirical formulae in terms of \(Q\)-values. From the analysis of the Q-values and the calculated half-lives, the \(^{{246,248}}\)Fm isotopes with (Z = 100) display a unique feature that suggests the presence of shell stability and the peculiarity of the trans-fermium region is discussed. Thus, for deformed parents, the rotational effect is required to obtain reasonable decay properties and systematic investigation will be performed in the subsequent study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. E. Rutherford and H. Geiger, Proc. R. Soc. 81, 162(1908).

  2. E. Rutherford and T. Royds, Philos. Mag. 17, 281 (1909).

    Article  Google Scholar 

  3. G. Gamow, Z. Phys. 51, 204 (1928).

    Article  ADS  Google Scholar 

  4. V. E. Viola, Jr. and G. T. Seaborg, J. Inorg. Nucl. Chem. 28, 741(1966).

    Article  Google Scholar 

  5. B.A. Brown, Phys. Rev. C 46, 811 (1992).

    Article  ADS  Google Scholar 

  6. D.N. Poenaru, M. Ivascu, J. Phys. 44, 791–796 (1983).

    Article  Google Scholar 

  7. A.H. Wapstra, G. J. Nijgh, and R. V. Lieshout, in Nuclear Spectroscopy Tables (North-Holland, Amsterdam, 1959).

    Google Scholar 

  8. A. Parkhomenko and A. Sobiczewski, Acta Phys. Pol. B 36, 3095 (2005).

    ADS  Google Scholar 

  9. S. G. Nilsson et al., Nucl. Phys. A 131, 1 (1969).

    Article  ADS  Google Scholar 

  10. A. Staszczak, A. Baran, and W. Nazarewicz, Phys. Rev. C 87, 024320 (2013).

    Article  ADS  Google Scholar 

  11. S. K. Patra, M. Bhuyan, M. S. Mehta and R. K. Gupta, Phys. Rev. C 80, 034312 (2009).

    Article  ADS  Google Scholar 

  12. M. Bhuyan, S. K. Patra and R. K. Gupta, Phys. Rev. C 84, 014317 (2011).

    Article  ADS  Google Scholar 

  13. M. Bhuyan, Phys. Rev. C 92, 034323 (2015).

    Article  ADS  Google Scholar 

  14. E. O. Fiset and J. R. Nix, Nucl. Phys. A 193, 647–671 (1972).

    Article  ADS  Google Scholar 

  15. Z. X. Ren, P. W. Zhao and J. Meng, Phys. Rev. C 105, L011301 (2022).

    Article  ADS  Google Scholar 

  16. D. D. Zhang, Z. X. Ren, P. W. Zhao, D. Vretenar, T. Nikšić, and J. Meng, Phys. Rev. C 105, 024322 (2022).

    Article  ADS  Google Scholar 

  17. P. Ring and P. Schuck, The Nuclear Many-Body Problem (Springer, Berlin, 1980).

    Book  Google Scholar 

  18. P. W. Zhao, Z. P. Li, J. M. Yao, and J. Meng, Phys. Rev. C 82, 054319 (2010).

    Article  ADS  Google Scholar 

  19. J. T. Majekodunmi, M. Bhuyan, D. Jain, K. Anwar, N. Abdullah, and R. Kumar, Phys. Rev. C 105, 044617 (2022).

    Article  ADS  Google Scholar 

  20. T. M. Joshua, Nishu Jain, Raj Kumar, K. Anwar, N. Abdullah and M. Bhuyan, Foundations 2, 85–104 (2022).

    Article  Google Scholar 

  21. A. Sobiczewski, Z. Patyk, and S. Cwiok, Phys. Lett. B 224, 1(1989).

    Article  ADS  Google Scholar 

  22. A. I. Budaca, R. Budaca, and I. Silisteanu, Nucl. Phys. A 951, 60 (2016).

    Article  ADS  Google Scholar 

  23. G. Royer, J. Phys. G: Nucl. Phys. 26, 1149 (2000).

    Article  ADS  Google Scholar 

  24. Z. Y. Wang, Z. M. Niu, Q. Liu, and J. Y. Guo, J. Phys. G: Nucl. Phys. 42 055112 (2015).

    Article  ADS  Google Scholar 

  25. D. T.Akrawy, D. N.Poenaru, A. H. Ahmed, and L. Sihver, Nucl. Phys. A 1021, 122419 (2022).

    Article  Google Scholar 

  26. T. Nikšić, D. Vretenar, and P. Ring, Phys. Rev. C 78, 034318 (2008).

    Article  ADS  Google Scholar 

  27. K. Zhang, M. K. Cheoun, Y. B. Choi, P. S. Chong, J. Dong, L. Geng, and DRHBc Mass Table Collab., Phys. Rev. C 102, 024314 (2020).

    Article  ADS  Google Scholar 

  28. F. G. Kondev, M. Wang, W. J. Huang, S.Naimi and G. Audi, Chin. Phys. C 45, 030001 (2021).

    Article  ADS  Google Scholar 

  29. D. T. Akrawy, H. Hassanabadi, S. S. Hosseini and K. P. Santhosh, Nucl. Phys. A 971, (2018).

  30. M. Dutra, O. Lourenço, S. S. Avancini, B. V. Carlson, A. Delfino, D. P. Menezes, and J. R. Stone, Phys. Rev. C 90, 055203 (2014).

    Article  ADS  Google Scholar 

  31. G. N. Flerov, V. A. Druin, and A. A. Pleve, Sov. Phys. Usp. 13, 24 (1970).

    Article  ADS  Google Scholar 

  32. M. Das, M. Bhuyan, J. T. Majekodunmi, N. Biswal, and R. N. Panda, Mod. Phys. Lett. A 37, 2250133 (2022).

    Article  ADS  Google Scholar 

  33. R. R. Swain, B. B. Sahu, P. K. Moharana, and S. K. Patra, Int. J. Mod. Phys. E 28, 1950041 (2019).

    Article  ADS  Google Scholar 

Download references

Funding

This work is partially supported by the FRGS Grant no. FRGS/1/2019/STG02/UNIMAP/02/2, SERB File no. CRG/2021/001229, FOSTECT Project Code. FOSTECT. 2019B.04, and FAPESP Project no. 2017/05660-0.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Th. Y. T. Alsultan or M. Bhuyan.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alsultan, T.Y., Majekodunmi, J.T., Kumar, R. et al. Study of Rotational Effect on Even-Even 254,256Rf Isotopes of α-Particle Radioactivity Using Various Semi-Empirical Formulae. Phys. Part. Nuclei Lett. 20, 969–975 (2023). https://doi.org/10.1134/S1547477123050059

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477123050059

Navigation