Skip to main content
Log in

On the Search for a Gravitational Chiral Anomaly Outside Curved Spacetime

  • PHYSICS OF ELEMENTARY PARTICLES AND ATOMIC NUCLEI. THEORY
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

In the last two decades it has been shown that quantum anomalies not only play an important role in particle physics, but also find novel applications in the physics of quantum fluids, leading to previously unknown nondissipative transport phenomena. In this paper we will discuss some aspects related to the search for manifestations of the gravitational chiral anomaly in a vortical and accelerated media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. V. I. Zakharov, “Chiral magnetic effect in hydrodynamic approximation,” Lect. Notes Phys. 871, 295 (2013). arXiv:1210.2186 [hep-ph].

  2. S. Dubovsky, L. Hui, A. Nicolis, and D. T. Son, “Effective field theory for hydrodynamics: thermodynamics, and the derivative expansion,” Phys. Rev. D 85, 085029 (2012). arXiv:1107.0731 [hep-th].

    Article  ADS  Google Scholar 

  3. K. Fukushima, D. E. Kharzeev, and H. J. Warringa, “The chiral magnetic effect,” Phys. Rev. D 78, 074033 (2008). arXiv:0808.3382 [hep-ph].

    Article  ADS  Google Scholar 

  4. D. T. Son and P. Surowka, “Hydrodynamics with triangle anomalies,” Phys. Rev. Lett. 103, 191601 (2009). arXiv:0906.5044 [hep-th].

    Article  ADS  MathSciNet  Google Scholar 

  5. S. Z. Yang, J. H. Gao, and Z. T. Liang, “Constraining non-dissipative transport coefficients in global equilibrium,” Symmetry 14, 948 (2022). arXiv:2203.14023.

  6. D. E. Kharzeev, “The chiral magnetic effect and anomaly-induced transport,” Prog. Part. Nucl. Phys. 75, 133–151 (2014). arXiv:1312.3348 [hep-ph].

    Article  ADS  Google Scholar 

  7. G. Y. Prokhorov, O. V. Teryaev, and V. I. Zakharov, “Effects of rotation and acceleration in the axial current: density operator vs Wigner function,” J. High Energy Phys. 02, 146 (2019). arXiv:1807.03584.

  8. K. Landsteiner, E. Megias, and F. Pena-Benitez, “Gravitational anomaly and transport,” Phys. Rev. Lett. 107, 021601 (2011). arXiv:1103.5006 [hep-ph]

    Article  ADS  MATH  Google Scholar 

  9. K. Jensen, R. Loganayagam, and A. Yarom, “Thermodynamics, gravitational anomalies and cones,” J. High Energy Phys. 02, 088 (2013). arXiv:1207.5824 [hep-th].

  10. M. Stone and J. Kim, “Mixed anomalies: chiral vortical effect and the Sommerfeld expansion,” Phys. Rev. D 98, 025012 (2018). arXiv:1804.08668.

  11. S. L. Adler, “Analysis of a gauged model with a spin-\(\frac{1}{2}\) field directly coupled a Rarita–Schwinger spin-\(\frac{3}{2}\) field,” Phys. Rev. D 97, 045014 (2018). arXiv: 1711.00907.

  12. G. Yu. Prokhorov, O. V. Teryaev, and V. I. Zakharov, “Gravitational chiral anomaly for spin 3/2 field interacting with spin 1/2 field,” Phys. Rev. D 106, 025022 (2022). arXiv:2202.02168.

  13. G. Yu. Prokhorov, O. V. Teryaev, and V. I. Zakharov, “Chiral vortical effect in extended Rarita–Schwinger field theory and chiral anomaly,” Phys. Rev. D 105, L041701 (2022). arXiv:2109.06048.

  14. J. Erdmenger, “Gravitational axial anomaly for four-dimensional conformal field theories,” Nucl. Phys. B 562, 315–329 (1999). arXiv:hep-th/9905176.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. M. Buzzegoli, “Thermodynamic equilibrium of massless fermions with vorticity, chirality and electromagnetic field,” Lect. Notes Phys. 987, 53–93 (2021). arXiv: 2011.09974.

  16. G. Yu. Prokhorov, O. V. Teryaev, and V. I. Zakharov, “Hydrodynamic manifestations of gravitational chiral anomaly,” Phys. Rev. Lett. 129, 151601 (2022). arXiv: 2207.04449.

Download references

Funding

This work was supported in part by the Russian Science Foundation, grant no. 22-22-00664.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. Yu. Prokhorov, O. V. Teryaev or V. I. Zakharov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prokhorov, G.Y., Teryaev, O.V. & Zakharov, V.I. On the Search for a Gravitational Chiral Anomaly Outside Curved Spacetime. Phys. Part. Nuclei Lett. 20, 429–432 (2023). https://doi.org/10.1134/S1547477123030548

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477123030548

Navigation