Skip to main content
Log in

Neutrino Oscillation Results and Search for Neutrino Sterile States

  • PHYSICS OF ELEMENTARY PARTICLES AND ATOMIC NUCLEI. EXPERIMENT
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

Neutrino oscillations are an amazing phenomenon which was suggested for the first time 65 years ago and finally confirmed experimentally about 25 yr ago. It provided an extremely important new insight of non-zero neutrino masses most popularly connected to the existence of New Physics beyond the Standard Model. Neutrino oscillation studies continue playing an important role, and there are many ongoing and future experimental projects, as well as theoretical developments aimed to improve our knowledge of oscillation parameters. In this paper, the status and prospects of oscillation measurements are described. This comprises the standard interpretation and also discussion of the existence of additional sterile states of neutrinos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

Notes

  1. \(\Delta m_{{ij}}^{2} = m_{i}^{2} - m_{j}^{2}\,\,(i,j = 1,2,3)\), for which the correspondence \(\Delta m_{{31}}^{2} = \Delta m_{{32}}^{2} + \Delta m_{{21}}^{2}\) is true.

REFERENCES

  1. B. Pontecorvo, “Mesonium and antimesonium,” J. Exp. Theor. Phys. 6, 429 (1958).

    ADS  Google Scholar 

  2. B. Pontecorvo, “Inverse beta processes and nonconservation of lepton charge,” J. Exp. Theor. Phys. 7, 172 (1957).

    Google Scholar 

  3. Z. Maki, M. Nakagawa, and S. Sakata, “Remarks on the unified model of elementary particles,” Prog. Theor. Phys. 28, 870–880 (1962).

    Article  ADS  MATH  Google Scholar 

  4. V. N. Gribov and B. Pontecorvo, “Neutrino astronomy and lepton charge,” Phys. Lett. B 28, 493 (1969).

    Article  ADS  Google Scholar 

  5. S. Bilenky and B. Pontecorvo, “Lepton mixing and neutrino oscillations,” Phys. Rep. 41, 225–261 (1978).

    Article  ADS  Google Scholar 

  6. S. M. Bilenky and S. T. Petcov, “Massive Neutrinos and Neutrino Oscillations,” Rev. Mod. Phys. 59, 671 (1987);

    Article  ADS  Google Scholar 

  7. [Erratum: 60, 575–575 (1988)].

  8. R. Davis, D. S. Harmer, and K. C. Hoffman, “Search for neutrinos from the Sun,” Phys. Rev. Lett. 20, 1205–1209 (1968).

    Article  ADS  Google Scholar 

  9. W. Hampel et al. (GALLEX Collab.), “GALLEX solar neutrino observations: Results for GALLEX IV,” Phys. Lett. B 447, 127–133 (1999).

    Article  ADS  Google Scholar 

  10. J. N. Abdurashitov et al. (SAGE Collab.), “Measurement of the solar neutrino capture rate with gallium metal,” Phys. Rev. C 60, 055801 (1999). arXiv:astro-ph/9907113.

    Article  ADS  Google Scholar 

  11. Y. Fukuda et al. (Super-Kamiokande Collab.), “Evidence for oscillation of atmospheric neutrinos,” Phys. Rev. Lett. 81, 1562–1567 (1998). arXiv:hep-ex/9807003.

    Article  ADS  Google Scholar 

  12. Q. Ahmad et al. (SNO Collab.), “Direct evidence for neutrino flavor transformation from neutral current interactions in the Sudbury Neutrino Observatory,” Phys. Rev. Lett. 89, 011301 (2002). arXiv:nucl-ex/0204008.

    Article  ADS  Google Scholar 

  13. S. Bilenky, Introduction to the Physics of Massive and Mixed Neutrinos (Springer, 2018), Vol. 947.

    Book  MATH  Google Scholar 

  14. S. Mikheyev and A. Smirnov, “Resonance amplification of oscillations in matter and spectroscopy of solar neutrinos,” Sov. J. Nucl. Phys. 42, 913–917 (1985).

    Google Scholar 

  15. L. Wolfenstein, “Neutrino oscillations in matter,” Phys. Rev. D 17, 2369–2374 (1978).

    Article  ADS  Google Scholar 

  16. L. D. Kolupaeva, M. O. Gonchar, A. G. Olshevskiy, and O. B. Samoylov, “Neutrino oscillations: status and prospects for determination of neutrino mass ordering and leptonic CP-Violation phase,” Phys. Usp. (in press).

  17. L. D. Kolupaeva, A. G. Olshevskiy, and O. B. Samoylov, “Status and research prospects of three-flavor neutrino oscillations,” Phys. Part. Nucl. 52, 357—373 (2021).

    Article  Google Scholar 

  18. P. Adamson, et al. (MINOS Collab.), “Combined analysis of νμ disappearance and νμ \( \to \) νe appearance in MINOS using accelerator and atmospheric neutrinos,” Phys. Rev. Lett. 112, 191801 (2014). arXiv:1403.0867 [hep-ex].

    Article  ADS  Google Scholar 

  19. E. K. Akhmedov, R. Johansson, M. Lindner, T. Ohlsson, and T. Schwetz, “Series expansions for three flavor neutrino oscillation probabilities in matter,” J. High Energy Phys. 04, 078 (2004). arXiv:hep-ph/0402175.

  20. A. Gando et al. (KamLAND Collab.), “Constraints on θ13 from a three-flavor oscillation analysis of reactor antineutrinos at KamLAND,” Phys. Rev. D 83, 052002 (2011). arXiv:1009.4771 [hep-ex].

    Article  ADS  Google Scholar 

  21. K. Abe et al. (T2K Collab.), “Indication of electron neutrino appearance from an accelerator-produced off-axis muon neutrino beam,” Phys. Rev. Lett. 107, 041801 (2011). arXiv:1106.2822 [hep-ex].

    Article  ADS  Google Scholar 

  22. P. Adamson et al. (MINOS Collab.), “Improved search for muon-neutrino to electron-neutrino oscillations in MINOS,” Phys. Rev. Lett. 107, 181802 (2011). arXiv: 1108.0015 [hep-ex].

    Article  ADS  Google Scholar 

  23. Y. Abe et al. (Double Chooz Collab.), “Indication of reactor \({{\bar {\nu }}_{e}}\) disappearance in the Double Chooz Experiment,” Phys. Rev. Lett. 108, 131801 (2012). arXiv: 1112.6353 [hep-ex].

    Article  ADS  Google Scholar 

  24. F. An et al. (Daya Bay Collab.), “Observation of electron-antineutrino disappearance at Daya Bay,” Phys. Rev. Lett. 108, 171803 (2012). arXiv:1203.1669 [hep-ex].

    Article  ADS  Google Scholar 

  25. J. Ahn et al. (RENO Collab.), “Observation of reactor electron antineutrino disappearance in the RENO experiment,” Phys. Rev. Lett. 108, 191802 (2012). arXiv: 1204.0626 [hep-ex].

    Article  ADS  Google Scholar 

  26. P. Dunne, “Latest neutrino oscillation results from T2K,” (2020). NEUTRINO URL:https://indico. fnal.gov/event/43209/contributions/187830/attachments/ 129636/ 159603/T2K_Neutrino2020.pdf

  27. F. Capozzi, E. Di Valentino, E. Lisi, A. Marrone, A. Melchiorri, and A. Palazzo, “Unfinished fabric of the three neutrino paradigm,” Phys. Rev. D 104, 083031 (2021). arXiv:2107.00532.

  28. NuFIT v5.1 (2021). www.nu-fit.org.

  29. B. Abi et al. (DUNE Collab.), “Long-baseline neutrino oscillation physics potential of the DUNE experiment,” Eur. Phys. J. C 80, 978 (2020). arXiv: 2006.16043.

  30. F. P. An et al. (Daya Bay Collab.), “New measurement of θ13 via neutron capture on hydrogen at Daya Bay,” Phys. Rev. D 93, 072011 (2016). arXiv:1603.03549.

  31. D. V. Forero, S. Gariazzo, P. Martínez-Miravé, O. Mena, C. A. Ternes, M. Tórtola, and J. W. F. Valle, “2020 Global reassessment of the neutrino oscillation picture,” J. High Energy Phys. 02, 071 (2021). arXiv: 2006.11237.

  32. T. Bezerra, “New results from the Double Chooz Experiment,” (2020). NEUTRINO URL: https://indico.fnal.gov/event/43209/contributions/187822/attachments/129095/158797/DoubleChooz_Neutrino2020_thiago_vFinal.pdf

  33. A. Abusleme, et al. (JUNO Collab.), “Sub-percent precision measurement of neutrino oscillation parameters with JUNO,” (2022). arXiv:2204.13249.

  34. J. Yoo, “Recent results from RENO experiment,” (2020). NEUTRINO URL: https://indico.fnal.gov/ event/43209/contributions/187886/attachments/130339/ 158753/ Neutrino2020YooRENO.pdf

  35. K. B. Luk, “Latest results from Daya Bay,” (2022). NEUTRINO URL: https://zenodo.org/record/ 6683712.Y2KbYS96C-w.

  36. K. K. Joo, “Results of reactor antineutrinos at RENO,” (2022). NEUTRINO URL: https://zenodo.org/record/6683722.Y2KbXC96C-w

  37. J. Hartnell, “NOvA,” (2022). NEUTRINO URL: https://zenodo.org/record/6683827.Y2KjFS96C-x.

  38. Y. Nakajima, “Recent results and future prospects from Super-Kamiokande,” (2020). NEUTRINO URL: https://indico.fnal.gov/event/43209/contributions/ 187863/attachments/129474/159089/ nakajima_Neutrino2020.pdf.

  39. A. Alekou et al. (ESSnuSB Collab.), “Updated physics performance of the ESSnuSB Experiment: ESSnuSB Collaboration,” Eur. Phys. J. C 81, 1130 (2021). arXiv: 2107.07585.

  40. M. G. Aartsen et al. (IceCube Collab.), “Measurement of atmospheric neutrino oscillations at 6–56 GeV with IceCube DeepCore,” Phys. Rev. Lett. 120, 071801 (2018). arXiv:1707.07081.

  41. K. Abe et al. (Hyper-Kamiokande Collab.), “Hyper-Kamiokande design report,” (2018). arXiv:1805.04163.

  42. M. G. Aartsen et al. (IceCube-Gen2 Collab.), “Combined sensitivity to the neutrino mass ordering with JUNO, the IceCube Upgrade, and PINGU,” Phys. Rev. D 101, 032006 (2020). arXiv:1911.06745.

  43. S. Ahmed, et al. (ICAL Collab.), “Physics potential of the ICAL Detector at the India-based Neutrino Observatory (INO),” Pramana 88, 79 (2017). arXiv: 1505.07380.

  44. P. Adamson et al. (MINOS+ Collab.), “Precision constraints for three-flavor neutrino oscillations from the Full MINOS+ and MINOS Dataset,” Phys. Rev. Lett. 125, 131802 (2020). arXiv:2006.15208.

  45. M. A. Acero et al. (NOvA Collab.), “Improved measurement of neutrino oscillation parameters by the NOvA experiment,” Phys. Rev. D 106, 032004 (2022). arXiv:2108.08219.

  46. S. Aiello et al. (KM3NeT Collab.), “Determining the neutrino mass ordering and oscillation parameters with KM3NeT/ORCA,” Eur. Phys. J. C 82, 26 (2022). arXiv: 2103.09885.

  47. S. Aiello et al. (KM3NeT, JUNO Collab.), “Combined sensitivity of JUNO and KM3NeT/ORCA to the neutrino mass ordering,” J. High Energy Phys. 03, 055 (2022). arXiv:2108.06293.

  48. F. Capozzi, S. W. Li, G. Zhu, and J. F. Beacom, “DUNE as the next-generation solar neutrino experiment,” Phys. Rev. Lett. 123, 131803 (2019). arXiv: 1808.08232.

  49. B. Yue, “Model independent measurement of 8B solar neutrinos in JUNO,” (2022). NEUTRINO URL: https://zenodo.org/record/6785200.Y2KvEi96BZI

  50. T. Yano, “Sensitivity study for astrophysical neutrinos at Hyper-Kamiokande,” (2020). ICHEP URL: https:// indico.cern.ch/event/868940/contributions/3817116/attachments/2082544/3498466/ICHEP2020v1.pdf.

  51. K. Abe et al. (Super-Kamiokande Collab.), “Solar neutrino measurements in Super-Kamiokande-IV,” Phys. Rev. D 94, 052010 (2016). arXiv:1606.07538.

  52. B. Aharmim et al. (SNO Collab.), “Combined analysis of all three phases of solar neutrino data from the Sudbury Neutrino Observatory,” Phys. Rev. C 88, 025501 (2013). arXiv:1109.0763 [nucl-ex].

    Article  ADS  Google Scholar 

  53. Y. Koshio, “Overview of the solar neutrino observation,” (2022). Neutrino URL: https://zenodo.org/record/6695966.Y2KwuC96BZI.

  54. R. N. Mohapatra and C. C. Nishi, “Implications of μ‒τ flavored CP symmetry of leptons,” J. High Energy Phys. 08, 092 (2015). arXiv:1506.06788.

  55. C. Bronner, “Recent results and future prospects from T2K,”(2022). NEUTRINO URL: https://indico.kps. or.kr/event/30/contributions/879/attachments/171/366/ Christophe20Bronner.pdf.

  56. B. Abi et al. (DUNE Collab.), “Deep Underground Neutrino Experiment (DUNE),” Far detector technical design report, Vol. 2, DUNE Physics (2020). arXiv: 2002.03005.

  57. M. Jiang, PhD Thesis. http://www-sk.icrr.utokyo.ac.jp/sk/pdf/articles/2019/mjiangdt.pdf.

  58. A. Himmel, “New oscillaton results from the NOvA experiment,” (2020). NEUTRINO URL: https://indico. fnal.gov/event/43209/contributions/187840/attachments/ 130740/159597/NOvA-Oscilations-NEUTRINO2020.pdf.

  59. K. Abe et al. (Hyper-Kamiokande Collab.), “Physics potentials with the second Hyper-Kamiokande detector in Korea,” Prog. Theor. Exp. Phys. 2018, C01 (2018). arXiv:1611.06118.

  60. P. Denton, “Flavor mixing, CP violation, and unitarity,” (2022). NEUTRINO URL: https://indico.kps.or. kr/event/30/contributions/881/attachments/214/426/Peter20Denton.pdf

  61. K. Ellis and S. Kelly, “Current and future neutrino oscillation constraints on leptonic unitarity,” (2020). arXiv: 2203.07323.

  62. M. A. Acero et al., “White Paper on light sterile neutrino searches and related phenomenology,” (2022). arXiv: 2203.07323.

  63. T. A. Mueller, D. Lhuillier, M. Fallot, A. Letourneau, S. Cormon, M. Fechner, L. Giot, T. Lasserre, J. Martino, G. Mention, A. Porta, and F. Yermia, “Improved predictions of reactor antineutrino spectra,” Phys. Rev. C 83, 054615 (2011). https://link.aps.org/doi/10.1103/PhysRevC.83.054615

    Article  ADS  Google Scholar 

  64. P. Huber, [Erratum: “Determination of antineutrino spectra from nuclear reactors,” Phys. Rev. C 84, 024617 (2011)] Phys. Rev. C 85, 029901(2012. https://link.aps.org/doi/10.1103/PhysRevC.85.029901

    Article  ADS  Google Scholar 

  65. F. P. An et al. (Daya Bay Collab.), “Improved measurement of the evolution of the reactor antineutrino flux and spectrum at Daya Bay,” (2022). arXiv:2210.01068.

  66. V. Kopeikin, M. Skorokhvatov, and O. Titov, “Reevaluating reactor antineutrino spectra with new measurements of the ratio between U235 and Pu239 β spectra,” Phys. Rev. D 104, L071301 (2021) arXiv:2103.01684.

  67. C. Giunti, Y. Li, C. Ternes, and Z. Xin, “Reactor antineutrino anomaly in light of recent flux model refinements,” Phys. Lett. B 829, 137054(2022). https://www.sciencedirect. com/science/article/pii/S0370269322001885.

    Article  Google Scholar 

  68. M. Licciardi, “Sterile neutrinos: experimental results with reactors,” (2022). Neutrino URL: https://indico.kps.or.kr/event/30/contributions/850/attachments/ 143/309/SlideMatthieu20Licciardi.pdf.

  69. A. Serebrov, A. Fomin, and R. Samoilov, “The Experiment Neutrino-4 on the search for sterile neutrino at SM-3 reactor,” Univ. Phys. Bull. 77, 401–406 (2022).

    Article  Google Scholar 

  70. M. Danilov, “New results from the DANSS experiment,” (2022). arXiv:2211.01208.

  71. S.Elliott, “The BEST Experiment,” (2022). Neutrino URL: https://indico.kps.or.kr/event/30/contributions/ 856/attachments/148/319/Steve20Elliott.pdf.

  72. A. Aguilar et al. (LSND Collaboration Collab.), “Evidence for neutrino oscillations from the observation of \({{\bar {\nu }}_{e}}\) appearance in a \({{\bar {\nu }}_{\mu }}\) beam,” Phys. Rev. D 64, 112007 (2001). https://link.aps.org/doi/10.1103/PhysRevD.64.112007

    Article  ADS  Google Scholar 

  73. Aguilar-Arevalo et al. (MiniBooNE Collab.), “Unexplained excess of electronlike events from a 1-GeV neutrino beam, Phys. Rev. Lett. 102, 101802 (2009). https://link.aps.org/doi/10.1103/PhysRevLett.102.101802

    Article  ADS  Google Scholar 

  74. C. A. Argüelles, I. Esteban, M. Hostert, K. J. Kelly, J. Kopp, P. A. N. Machado, I. Martinez-Soler, and Y. F. Perez-Gonzalez, “MicroBooNE and the νe interpretation of the MiniBooNE low-energy excess,” Phys. Rev. Lett. 128, 241802 (2022). arXiv:2111.10359.

  75. A. Schukraft, “Short baseline neutrino program,” (2022). Neutrino URL: https://indico.kps.or.kr/ event/30/contributions/855/attachments/514147/318/ Anne20Schukraft.pdf.

Download references

ACKNOWLEDGMENTS

Most of the material presented in this report is based on contributions to the XXX International Conference on Neutrino Physics and Astrophysics, Virtual Seoul, May 30–June 4, 2022. The author is very grateful to all contributors, in particular, to the speakers: Yifang Wang, Silvia Pascoli, Joachim Kopp, Matthieu Licciardi, Peter Denton, Carlos Delgado, Steve Elliott, Anne Schukraft, Hanyu Wei and many others.

Special thanks I owe to my colleagues: Maxim Gonchar and Liudmila Kolupaeva who are maintaining the site with oscillation results and their combinations: https://git.jinr.ru/nu/osc.

I am grateful to Natalia Mazarskaya for careful reading and correcting the manuscript.

Funding

The work was supported by the Russian Science Foundation under grant agreement 18-12-00271.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Olshevskiy.

Ethics declarations

The author declares that he has no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olshevskiy, A.G. Neutrino Oscillation Results and Search for Neutrino Sterile States. Phys. Part. Nuclei Lett. 20, 202–212 (2023). https://doi.org/10.1134/S1547477123030494

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477123030494

Navigation