Skip to main content
Log in

The Casimir Effect for Diffraction Gratings, Symmetry Breaking, and Geometric Transitions

  • PHYSICS OF ELEMENTARY PARTICLES AND ATOMIC NUCLEI. THEORY
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

The theory of the Casimir effect for diffraction gratings is considered; symmetry breaking in geometric transitions is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. H. B. G. Casimir and D. Polder, “The influence of retardation on the London–van der Waals forces,” Phys. Rev. 73, 360–372 (1948).

    Article  ADS  MATH  Google Scholar 

  2. H. B. G. Casimir, “On the attraction between two perfectly conducting plates,” Proc. Kon. Ned. Akad. Wetensch. B 51, 793–795 (1948).

    MATH  Google Scholar 

  3. E. M. Lifshitz, “The theory of molecular attractive forces between solids,” Zh. Eksp. Teor. Fiz. 29, 94–110 (1955).

    Google Scholar 

  4. V. V. Nesterenko and I. G. Pirozhenko, “Lifshitz formula by a spectral summation method,” Phys. Rev. D 86, 052503 (2012).

    Article  ADS  Google Scholar 

  5. V. N. Marachevsky and A. A. Sidelnikov, “Green functions scattering in the Casimir effect,” Universe 7, 195 (2021).

    Article  ADS  Google Scholar 

  6. A. Rodriguez, F. Capasso, and S. Johnson, “The Casimir effect in microstructured geometries,” Nat. Photon 5, 211–221 (2011).

    Article  ADS  Google Scholar 

  7. L. M. Woods, M. Krüger, and V. V. Dodonov, “Perspective on some recent and future developments in Casimir Interactions,” Appl. Sci. 11, 293 (2021).

    Article  Google Scholar 

  8. V. N. Marachevsky and Y. M. Pis’mak, “Casimir–Polder Effect for a plane with Chern–Simons interaction,” Phys. Rev. D 81, 065005 (2010).

    Article  ADS  Google Scholar 

  9. V. N. Marachevsky, “Casimir effect for Chern–Simons layers in the vacuum,” Theor. Math. Phys. 190, 315–320 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  10. I. V. Fialkovsky, V. N. Marachevsky, and D. V. Vassilevich, “Finite-temperature Casimir effect for graphene,” Phys. Rev. B 84, 035446 (2011).

    Article  ADS  Google Scholar 

  11. D. Fursaev and D. Vassilevich, Operators, Geometry and Quanta: Methods of Spectral Geometry in Quantum Field Theory (Springer, Dordrecht, 2011).

    Book  MATH  Google Scholar 

  12. M. Bordag, G. L. Klimchitskaya, U. Mohideen, and V. M. Mostepanenko, Advances in the Casimir Effect (Oxford University Press, 2015).

    MATH  Google Scholar 

  13. A. Lambrecht and V. N. Marachevsky, “Casimir Interaction of dielectric gratings,” Phys. Rev. Lett. 101, 160403 (2008).

    Article  ADS  Google Scholar 

  14. A. Lambrecht and V. N. Marachevsky, “Theory of the Casimir effect in one-dimensional periodic dielectric systems,” Int. J. Mod. Phys. A 24, 1789–1795 (2009).

    Article  ADS  MATH  Google Scholar 

  15. T. Emig, R. L. Jaffe, M. Kardar, and A. Scardicchio, “Casimir interaction between a plate and a cylinder,” Phys. Rev. Lett. 96, 080403 (2006).

    Article  ADS  Google Scholar 

  16. S. J. Rahi, T. Emig, N. Graham, R. L. Jaffe, and M. Kardar, “Scattering theory approach to electromagnetic Casimir forces,” Phys. Rev. D 80, 085021 (2009).

    Article  ADS  Google Scholar 

  17. A. Canaguier-Durand, P. A. Maia Neto, I. Cavero-Pelaez, A. Lambrecht, and S. Reynaud, “Casimir interaction between plane and spherical metallic surfaces,” Phys. Rev. Lett. 102, 230404 (2009).

    Article  ADS  Google Scholar 

  18. M. Bordag and I. Pirozhenko, “Vacuum energy between a sphere and a plane at finite temperature,” Phys. Rev. D 81, 085023 (2010).

    Article  ADS  Google Scholar 

  19. O. M. Rayleigh, “On the dynamical theory of gratings,” Proc. R. Soc. London, Ser. A 79, 399–415 (1907).

    Article  ADS  MATH  Google Scholar 

  20. H. B. Chan, Y. Bao, J. Zou, R. A. Cirelli, F. Klemens, W. Mansfield, and C. Pai, “Measurement of the Casimir force between a gold sphere and a silicon surface with nanoscale trench arrays,” Phys. Rev. Lett. 101, 030401 (2008).

    Article  ADS  Google Scholar 

  21. H.-C. Chiu, G. L. Klimchitskaya, V. N. Marachevsky, V. M. Mostepanenko, and U. Mohideen, “Demonstration of the asymmetric lateral Casimir force between corrugated surfaces in the nonadditive regime,” Phys. Rev. B 80, 121402 (2009).

    Article  ADS  Google Scholar 

  22. H.-C. Chiu, G. L. Klimchitskaya, V. N. Marachevsky, V. M. Mostepanenko, and U. Mohideen, “Lateral Casimir force between sinusoidally corrugated surfaces: asymmetric profiles, deviations from the proximity force approximation, and comparison with exact theory,” Phys. Rev. B 81, 115417 (2010).

    Article  ADS  Google Scholar 

  23. B. V. Derjaguin, I. I. Abrikosova, and E. M. Lifshitz, “Direct measurement of molecular attraction between solids separated by a narrow gap,” Q. Rev. 10, 295–329 (1956).

    Article  Google Scholar 

  24. F. Intravaia, S. Koev, I. W. Jung, A. A. Talin, P. S. Davids, R. S. Decca, V. A. Aksyuk, D. A. R. Dalvit, and D. López, “Strong Casimir force reduction through metallic surface nanostructuring,” Nat. Commun. 4, 2515 (2013).

    Article  ADS  Google Scholar 

  25. Y. Bao, R. Guérout, J. Lussange, A. Lambrecht, R. A. Cirelli, F. Klemens, W. M. Mansfield, C. S. Pai, and H. B. Chan, “Casimir force on a surface with shallow nanoscale corrugations: geometry and finite conductivity effects,” Phys. Rev. Lett. 105, 250402 (2010).

    Article  ADS  Google Scholar 

  26. L. Tang, M. Wang, C. Y. Ng, M. Nikolic, C. T. Chan, A. W. Rodriguez, and H. B. Chan, “Measurement of non-monotonic Casimir forces between silicon nanostructures,” Nat. Photon. 11, 97–101 (2017).

    Article  ADS  Google Scholar 

  27. M. Wang, L. Tang, C. Y. Ng, R. Messina, B. Guizal, J. A. Crosse, M. Antezza, C. T. Chan, and H. B. Chan, “Strong geometry dependence of the Casimir force between interpenetrated rectangular gratings,” Nat. Commun. 12, 600 (2021).

    Article  ADS  Google Scholar 

  28. S. Y. Buhmann, Dispersion Forces (Springer, Berlin, 2012), Vols. 1–2.

    Book  Google Scholar 

  29. H. Bender, C. Stehle, C. Zimmermann, S. Slama, J. Fiedler, S. Scheel, S. Y. Buhmann, and V. N. Marachevsky, “Probing atom-surface interactions by diffraction of Bose–Einstein condensates,” Phys. Rev. X 4, 011029 (2014).

    Google Scholar 

  30. S. Y. Buhmann, V. N. Marachevsky, and S. Scheel, “Impact of anisotropy on the interaction of an atom with a one-dimensional nano-grating,” Int. J. Mod. Phys. A 31, 1641029 (2016).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. M. Antezza, H. B. Chan, B. Guizal, V. N. Marachevsky, R. Messina, and M. Wang, “Giant Casimir Torque between rotated gratings and the θ = 0 anomaly,” Phys. Rev. Lett. 124, 013903 (2020).

    Article  ADS  Google Scholar 

  32. R. Guérout, C. Genet, A. Lambrecht, and S. Reynaud, “Casimir torque between nanostructured plates,” Europhys. Lett. 111, 44001 (2015).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by a grant from the Russian Science Foundation, project no. 22-13-00151.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Marachevsky.

Ethics declarations

The author declares no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marachevsky, V.N. The Casimir Effect for Diffraction Gratings, Symmetry Breaking, and Geometric Transitions. Phys. Part. Nuclei Lett. 20, 255–258 (2023). https://doi.org/10.1134/S1547477123030457

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477123030457

Navigation